RFIC

()

2 0 0 0

R F I C

٠

 1. : RFIC ()

2. : 2000 3 2 2000 12 31

3. : ()

4.

가.

	3	4	5	6	7	8	9	10	11	12	
< RFIC >											
•											
• ADS											
•											
• RF											

		3	4	5	6	7	8	9	10	11	12	
< >	•											
•												
•												
< RFIC												
>												
•												
•												
	(%)	10		40			70			100		

		(%)	
<rfic></rfic>			
가.	• PHEMT 가	100	
. ADS	•	100	
	•	100	
	•	100	

		(%)
< >		
	• Meander line	
가.	• Mock-up	100
	• (3) EM	100
	• meander line	100
<rfic< td=""><td>></td><td></td></rfic<>	>	
가.	•	100
	• RFIC ,	100

5.

가. RFIC

1) PHEMT 2

	1920 - 1980 MHz
(P _{1-dB})	≥25.4 dBm
	≥21 dB
가	≥22%
OIP ₃	36 dBm

2

2) PHEMT

	2110 - 2170 MHz
	≤1.5 dB
	≥28.5 dB
	± 1 dB
(P _{1-dB})	≥ 10 dBm
OIP ₃	20 dBm

3) RFIC

	1910 - 2050 MHz ()
(10 dB)	2030 - 2250 MHz ()
	1.5 dBi

' 99. 9	, , " DRA
"99. 9. 18	, pp. 285 288, 1999 9 . , "IMT - 2000 PHEMT " ,1999
' 99. 11	, 22 , 2 , pp. 65 68.
' 99. 11	, pp. 116 119, 1999 11 .
	", vol. 20. No.1 pp. 805 808, 1999 11 .

' 99. 11. 6	, "IMT - 2000 PHEMT
	" ,1999
	, 9 , 1 ,
	pp. 357 360.
' 99. 12	, "РНЕМТ
	IMT - 2000 " 1999
	,
	10 , pp. 55 63.
' 2000. 7.	Bomson Lee, Wonkyu Choi, " Analysis of
	resonant frequency and impedance
	bandwidth for rectangular dielectric
	resonator antenna", IEEE Antennas and
	Propagation Society International
	Symposium, vol. 4, pp. 2084-2087, July 2000.
'2000. 7	, "Meander line
	,,
	, vol. 21. No.1 pp.145 148,
	2000 7 .
'2000. 8	, , ,
	",
	, 8 (Vol.11 No.5), pp. 755 762,
	2000
2000. 9.23	, "ІМТ - 2000 РНЕМТ
	" ,2000
	23 , 2 ,
	pp. 61 64.
' 2000. 12	, "IMT - 2000 PHEMT
	", _ ASIC
	1 , pp. 22 30

6.

1) , , 가

2) RF front-end

3) IMT - 2000 フト

ADS	RF	1set	
HFSS		1set	
Work Station	RFIC	3	
PC		3	
	RFIC	3	
	LNA	1	
	S	1	
		3	
	Power Amp	2	
		1	

SUMMARY

1. Objective and Importance of Research

The Mobile International T elecommunication (IMT - 2000)representative of the 3rd generation of digital mobile communication systems currently being developed. Enabling technologies for these systems include high performance Radio Frequency (RF) components, such as antenna and integrated circuit (RFIC) chip sets. Handset terminals (cellular phones) are the highest-volume applications existing today. Universal demands on handsets exist for small size, light weight, and higher levels of integration, independent of the types of commercial applications and operating frequencies. The multi-layer substrate in a hybrid microwave IC from or built as part of a monolithic microwave IC structure seems most adequate to achieve the small size and high integration. In a compact RF component, integration of the antenna with RFIC's (power amplifiers and low-noise amplifier) is a very attractive possibility to reduce size and weight of the handsets for IMT-2000 systems.

In this research, the internal chip antenna, power amplifiers, and low noise amplifiers have been developed for the integration chip antenna with RFIC's.

2. Contents and Scope of Research

- A. Design and fabrication of RFIC's (power amplifier and low noise amplifier)
 - Parameter extraction for equivalent circuit elements of microwave transistors
 - ► Linear and non-linear analysis of microwave transistors
 - ► Circuit design of power amplifiers and low-noise amplifiers

using a nonlinear RF circuit simulator (Libra of HP-EEsof)

- ► Fabrication of hybrid power amplifiers and low noise amplifiers
- ► RF characterization for the fabricated power amplifiers and low noise amplifiers
- ► Design goals

<Power Amplifier>

Frequency Band	1920 - 1980 MHz
Output Power (P _{1-dB})	27 dBm
Liniear Gain	25 dB
Powe Added Efficiency	40%
Intercept Point of IM ₃ (OIP ₃)	40 dBm

<Low Noise Amplifier>

Frequency Band	2110 - 2170 MHz
Liniear Gain	30 dB
Noise Figure	1.5 dB
Intercept Point of IM ₃ (OIP ₃)	10 dBm

- B. Design and fabrication of a compact dielectric chip antenna with microstrip feeding and coplanar feeding
 - ► Parameter study of meander lines
 - ► Three-dimensional analysis of high frequency characteristics using EM simulation for the understanding of elaborate passive devices and matched structures

- ► Research of antenna property in real mock-up structures
- Research of the merits and demerits of feeding structure such as coplanar and microstrip feedings
- ► Design goal

Frequency Band	1920 - 1980 MHz(Tx)
	2110 - 2170 MHz(Rx)
Bandwidth Rate	3% for both of Tx and Rx

- C. Fabrication and characterization of an integration chip antenna with RFIC's
 - ► Research of impedance matching between an antenna and RFIC's using multi-layer feeding line and a duplexer
 - ► Research of minimizing techniques in coupling loss of a integration chip antenna

3. Research Results

A. Performance of a prototype PHEMT hybrid power amplifier for handsets of IMT-2000

Frequency Band	1920- 1980 MHz
Output Power	≥25.4 dBm
Linear Gain	≥21 dB
Power Added Efficiency	≥22%
OIP ₃	36 dBm

B. Performance of a prototype PHEMT hybrid low noise amplifier for handsets of IMT-2000

Frequency Band	2110-2170 MHz
Noise Figure	≤1.5 dB
Linear Gain	≥29 dB
OIP ₃	20 dBm

C. Performance of a prototype coplanar excited internal chip antenna for IMT-2000

Frequency Band	Tx: 1910 - 2050 MHz (7%)
	Rx: 2030 - 2250 MHz (10.3%)
Gain	about 1.5 dBi

► Radiation pattern of the only chip antenna is different from that of integrated antenna. This result seems to be due to the different current distribution on ground plane

4. Applications and Expected Contribution

- ► Automotive radar, ITS system, military system applications.
- ► Low-cost packaging technology
- ► Basic technology for active antennas for microwave and millimeterwave bands

1		
2	Meander line	3
	1	3
	2 Meander line	15
	3	22
	4	25
3	RFIC	2 31
	1 Power HEMT	가32
	1. HEMT	32
	2. HEMT	가33
	가. DC ·	
		36
		40
	2 가	
	2	44
	1.	44
	3	49
	1.	49
	2	51

54	••••••	3.	
59		НЕМТ	4
가59	PHEMT	1	
60	2	2	
62		1.	
66	•••	2.	
68	2	3.	
70	2	4.	
72	2	3	
trade off	OPT	4	
74	•••••		
		1.	
74			
		2.	
76	•••••		
		222	_
83	••••	RFIC	5
88			6
92		•••••	

2-1		
2-2	(a)-(c)	,
	•••••	
2-3	(d)-(f)	,
2-4	2 GHz	(= 90)15
2-5	"H"	18
2-6	"W"	19
2-7	Meander line	20
2-8	Meander line	"Q"21
2-9		25
2- 10	IMT - 2000	
		(No reflector)26
2-11	IMT - 2000	
		(Using reflector)27
2- 12	IMT - 2000	
		(Using reflector)27
2- 13	IMT - 2000	
		(Using reflector)28
3-1	RFIC	31
3-2		53
3-3		(20 dB)53
4-1	RFIC	59
4-2	HP ATF-35143	НЕМТ
	가	60

63	O P T	\mathbf{S}_{11}^{*}			4-3
72					4-4
			2		4-5
77					
84				Duplexer	5-1
		,			6-1
89			•••••		
90					6-2

2-1					• • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••	4
2-2						••••	•••••	•••••	6
2-3									7
2-4	Н	$E_{\phi}(c$	o-pol)	E_{θ} (c	cross-p	ool) (),		
	E	E_{θ} (co-pol)	E_{ϕ} (c	cross-p	ool) () .	•••••	7
2-5			Т	TE_{111}^{z}	٧	$\overline{\varepsilon_r}bk_0$			
	(z	$\sqrt{\varepsilon_r}bk_0$		• • • • • • • • • • • • • • • • • • • •	•••••		•••••	•••••	9
2-6						••••	•••••	•••••	10
2-7									11
2-8				Q		•••••		•••••	11
2-9					•••	•••••	•••••	•••••	12
2- 10							Q) rad	
		(ε_i)	, =90)	•••••	• • • • • • • • • • • • • • • • • • • •	•••••		•••••	13
2-11		meando	er		() .	•••••	• • • • • • • • • • • • • • • • • • • •	16
2- 12						• • • • • • • • • • • • • • • • • • • •	•••••	•••••	17
2- 13	meander	line							18
2- 14		"H	"				()	,	
			()	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	19
2- 15		"W"				() ,		
			()	• • • • • • • • • • • • • • • • • • • •		•••••	•••••	•••••	20
2- 16	meander	line				() ,		
			()	••••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••	21
2- 17	meander	line	"Q"					(),	
			()	• • • • • • • • • • • • • • • • • • • •		•••••			22
2- 18			meand						

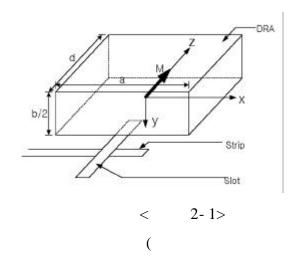
2- 19	m	eander line		23	3
2-20			•••••	24	4
2-21	=0 °	$E_{\theta}(\text{co-pol})$	E_{ϕ} (cross-po	d) () ,	
	=90 °	E_{θ} (co-pol	E_{ϕ} (cross	-pol) ()24	4
2-22	IMT - 200	0		(No reflector) 26	5
2-23	IMT - 200	0			
	(Using re	eflector)		20	5
2-24	IMT - 200	0			
	(Using re	eflector)	•••••	27	7
2-25	IMT - 200	0			
	(Using re	eflector)	•••••••	28	8
2-26	Microstri	p line	, H-1	plane	
	((Co-pol)	•••••	29	9
2-27	Co-plana	r	, H-plane(a))	
	E-plane(b))	(Co-pol)	30)
3-1	Power HE	MT	, -	33	3
3-2	Statz-Puc	el	•••••	4	1
3-3	HEMT	가		43	3
3-4		가		Power HEMT	
	-	•••••	• • • • • • • • • • • • • • • • • • • •	43	3
3-5	1.9-2.0 GH	łz	S		
		가	S	44	4
3-6	2	••••••		40	5
3-7	2		••••••	47	7
3-8	2				
	가	•••••		47	7

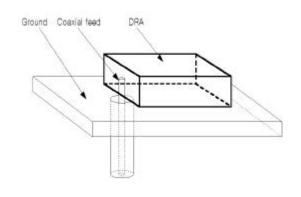
3-9	2			48
3- 10	2		OIP_3	48
3-11				50
3- 12		2		51
3- 13	RF			52
3- 14	2			54
3- 15	2		S ₂₂	55
3- 16	2		S ₁₁	55
3- 17	2		•	
	(@ 1	.92 GHz)	• • • • • • • • • • • • • • • • • • • •	56
3- 18	2		•	
	(@ 1	.95 GHz)	•••••	56
3- 19	2		•	
	(@ 1	.98 GHz)		57
3-20	2			57
3-21	2		OIP_3	58
4-1			HEMT	가60
4-2				61
4-3				
				61
4-4	Ls	PH	EMT (ATF	7 - 35143)
	ОРТ	S 11	••••	63
4-5				64
4-6			S 11 S	2265
4-7				(NF)
		(S_{21})	•••••	65

67		4-8
S ₂₂ 67	S_{11}	4-9
(NF)		4- 10
68	(S ₂₁)	
68	2	4-11
69	2	4- 12
S ₂₂ 70	2 S ₁₁	4- 13
CC)70	(RF	4- 14
71	2	4- 15
(Ls)		4- 16
74		
74	2	4- 17
S ₁₁ S ₂₂ 75	2	4- 18
	2	4- 19
75		
76	2	4-20
78		4-21
	O P T	4-22
(NF)79		
$V_{DS} = 2.5 V,$	$I_{DS} = 44 \text{ mA}$, (a)	4-23
	(b) $V_{DS} = 3.6 \text{ V}$	
80		
	(2.14 GHz)	4-24
$(I_{DS} = 44 \text{ mA}) \dots 81$	\mathbf{V}_{DS}	
	(2.14 GHz)	4-25

		$\mathbf{I}_{D} s$		$(V_{DS} = 3$	V)	81
4-26	2		•		••••	•••••	82
4-27	2		OIP ₃		• • • • • • • • • • • • • • • • • • • •		82
5-1		RFIC				•••••	83
5-2	Duplexer					•••••	84
5-3	Duplexer				(H - pla	ne)	85
5-4	Co-planar		,	H-plane(a))		
	E-plane(b)			(Co-pol)		•••••	86
5-5	Murata		WLA	AN			
	()	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	87

1


21		,	,	,		
가						,
·	(PSNT)		(ISDN)			
(ATM)		ISDN)	(12211)			
(1111/1)	(B	IDDI()	(PDS)			
			(LDS)		(Test seem	, , ,
N			D 477	2000	(intern	national
Mobile Telecomn	nunication)	•	IMI	- 2000		
가						
	ATM			A	API(App	lication
Program Interface	e)			•		
IMT - 2000						
				가 :	가	
	(AIN: Advanced	d Intelligent	Network)			
,		가			,	,
IMT - 2	2000	, , 가				가
기 기 - 2		~1				7 I
	•			(1 2		Dag
IMT - 2000				(1 3	GHZ)	PCS,
	IDS, GMPCS, WL	AN パ				
F	RF					


가

	,				,	
,	가		가 -	ı	,	
			7	Ť	RFI	С
,				,	RFI	C
			,	/	RFIC	
	가				KI IC	
			(IMT - 2000)	RFIC		
			•		2	
meander line		, , ,	/ /	,	3	
		/ /	,	•	4	~
		/	/		,	5
				•	O	
					•	

2 Meander line

IMT - 2000 **RFIC** . IMT - 2000 1920 1980 MHz(3%), 2110 2170 MHz(3%) 가 1 Meander line 2 1 1. (Dielectric Resonator Antenna) 가 [1]. 가 , 가 [2]. , MIC 가 degeneracy가 [3], 가 [4], degeneracy $(arepsilon_r)^{-1/2}$, ε_r

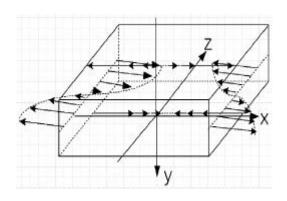
$$H_z = (k_x^2 + k_y^2)A \cos(k_x x)\cos(k_y y)\cos(k_z z)$$
 - - (2-3a)

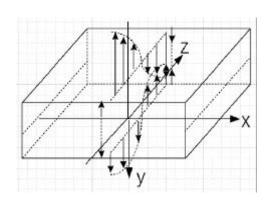
$$H_x = (k_x k_z) A \sin(k_x x) \cos(k_y y) \sin(k_z z)$$
 - - (2-3b)

$$H_y = (k_y k_z) A \cos(k_x x) \sin(k_y y) \sin(k_z z)$$
 - - (2-3c)

$$E_x = (jw\mu k_y)A\cos(k_x x)\sin(k_y y)\cos(k_z z)$$
 - (2-3d)

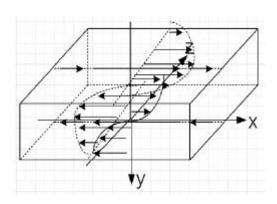
$$E_y = -(jw\mu k_x)A \sin(k_x x)\cos(k_y y)\cos(k_z z) - - (2-3e)$$

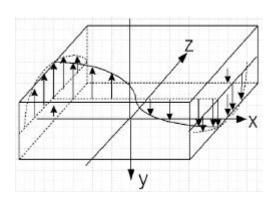

$$E_z = 0$$
 - - - - - (2-3f)

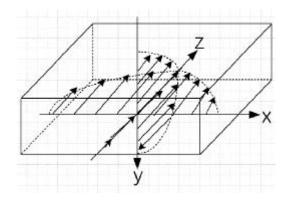

(2-3) A ,
$$k_x, k_y, k_z$$
 x, y, z

$$, TE_{111}^{z} H_{z}(2-3a)$$

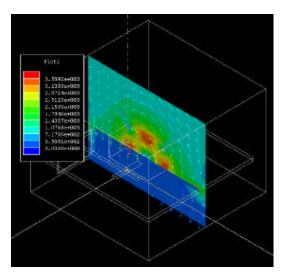
$$H_x = (k_x k_z) A \sin(k_x x) \cos(k_y y) \sin(k_z z)$$

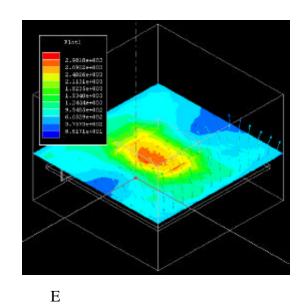

$$H_x = (k_x k_z) A \sin(k_x x) \cos(k_y y) \sin(k_z z) \qquad H_y = (k_y k_z) A \cos(k_x x) \sin(k_y y) \sin(k_z z)$$



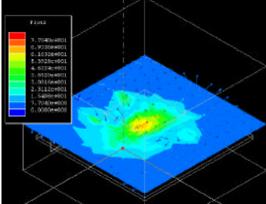

$$E_x = (jw\mu k_y)A \cos(k_x x)\sin(k_y y)\cos(k_z z)$$

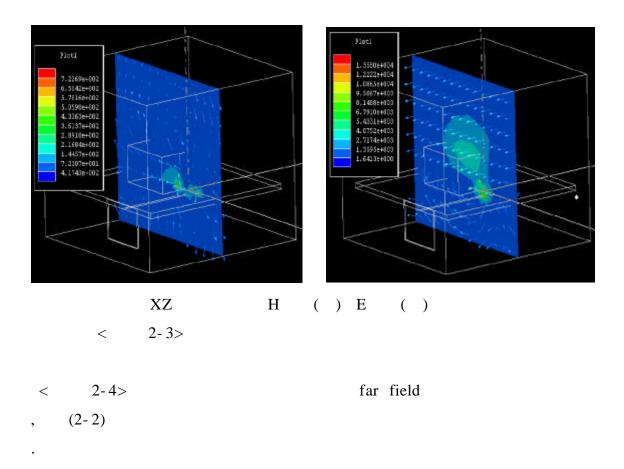
 $E_y = -(jw \mu k_x)A \sin(k_x x)\cos(k_y y)\cos(k_z z)$

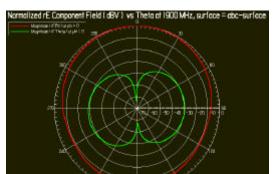


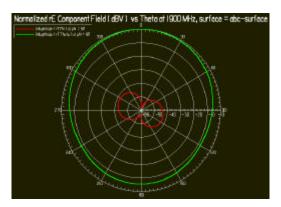


$$H_z = (k_x^2 + k_y^2)A \cos(k_x x)\cos(k_y y)\cos(k_z z)$$


< 2-2>


YZ , XY





YZ , XY

Н

< 2-4> H
$$E_{\phi} (\text{co-pol})$$
 $E_{\theta} (\text{cross-pol})$ () ,
 E $E_{\theta} (\text{co-pol})$ $E_{\phi} (\text{cross-pol})$ ()

3. (Dielectric Waveguide Model)

Model . Dielectric Waveguide Model $\varepsilon_r > 38$

6% 8% 가

[5,6,7].

|x| = a/2 |y| = b/2

 k_x , k_y (2-4)

 $k_x = \frac{\pi}{a}$; $k_y = \frac{\pi}{b}$ - - - - - (2-4)

Dielectric waveguide model

(2-5)

 $k_z \tan \left(k_z \frac{d}{2}\right) = \sqrt{(\varepsilon_r - 1)k_0^2 - k_z^2} - - - - - (2-5)$

x, y, z

 k_x, k_y, k_z (2-5) (2-6)

 $k_x^2 + k_y^2 + k_z^2 = \varepsilon_r k_0^2$ - - - - - - - (2-6)

(2-6) k_0

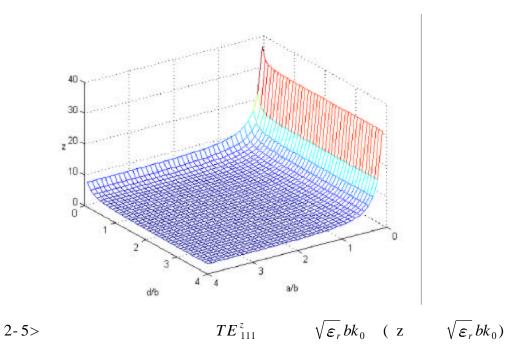
. <

2-3> (2-4), (2-5), (2-6) TE_{111}^{z}

 $\sqrt{\varepsilon_r}bk_0$

. 1 y

b/2 = 5 mm, x, z

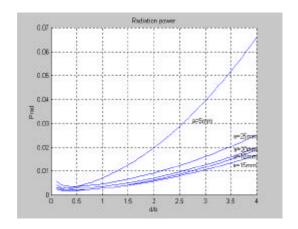

2-5>

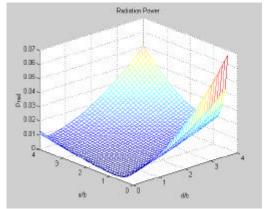
x, y a/b, d/b , z $\sqrt{\varepsilon_r}bk_0$. < 2-5>

가

가

[8,10,11].


$$<$$
 2-1> DRA TE_{111}^z (2-7) p_m


$$\overline{p_m} = -\frac{j8A \ w\varepsilon_0(\varepsilon_r - 1)}{k_x k_y k_z} \sin\left(\frac{k_z d}{2}\right) \overline{a_z} - - -$$
 (2-7)

$$\overline{p_m}$$
 (2-8)

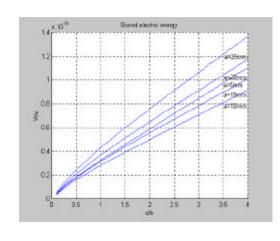
<

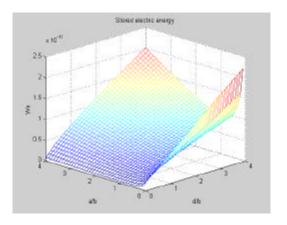
$$P_{rad} = 10k_0^4 |\overline{p_m}|^2$$
 - - - - - - - (2-8)

< 2-6>

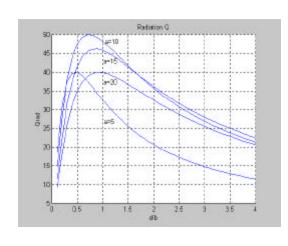
$$W_{e} = \frac{\varepsilon_{0}\varepsilon_{r}abdA^{2}}{32} \left(1 + \frac{\sin k_{z}d}{k_{z}d}\right) \left(k_{x}^{2} + k_{y}^{2}\right) - - (2-9)$$

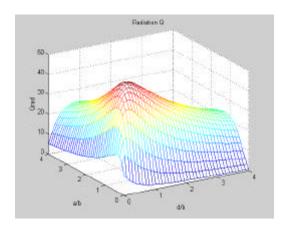
$$< 2-7> 37.84 , 7 b/2 = 5 mm$$


DRA . ε_r


7\tag{F}, DRA
$$(\varepsilon_r)^{-1/2}$$
 [(6)]. DRA Q_{rad} (10)

 $Q_{rad} = 2w_0 W_e / P_{rad} \propto (e_r)^{3/2} - - - (2-10)$


, (11)


$$B W = \frac{VS WR - 1}{Q\sqrt{VS WR}} - - - - - (2-11)$$

2-7> <

2-8> <

Q

2-8> <

37.84 , 가 b/2 = 5 mm

 Q_{rad}

. < 2-8>

a d

 Q_{rad} 가 가

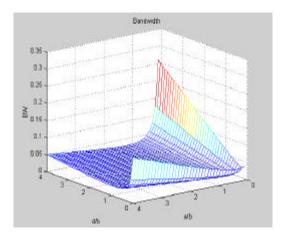
2-9> <

37.48 , 7 + b/2 = 5 mm

. < 2-7>

 Q_{rad}

a가


, d 가

가

2-9> . <

> 가 가

< 2-9>

4. ,

Dielectric waveguide model

HFSS . < 2-1>

37.84 , 3.78 GHz 3

_	1. / 2	.1	Resonant	frequency	Impedance bandwidth		
a	b/2	d	DWM Simulation		DWM	Simulation	
18 mm	5 mm	5 mm	3.78 GHz	3.66 GHz	1.8%	2.7%	
11 mm	5 mm	9 mm	3.78 GHz	3.68 GHz	1.4%	3.3%	
9 mm	5 mm	20 mm	3.78 GHz	3.7 GHz	1.9%	2.7%	

< 2-1>

 $(\varepsilon_r = 37.84)$

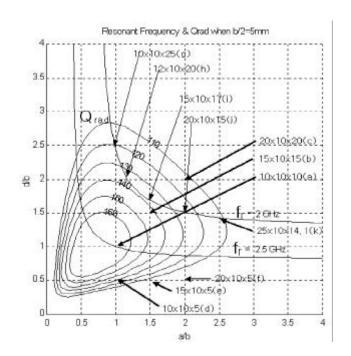
가

< 2- 10> 90 , Q_{rad}

. 2 GHz 2.5 GHz

, Q_{rad} 110 160

. < 2-14>


,

. < 2-3 5> < 2-10>

(a) (c) 7,

,

(a) (c) a d7\ .

< 2- 10> Q_{rad} $(\varepsilon_r = 90)$

				Resonant frequency			Im	npedance bandwidth		
	a	b/ 2	d	DWM	Simulation	measure	DWM	Simulation	measure	
(a)	10mm	5mm	10m m	2.5GHz	2.354GHz	2.73GHz	0.39%	2.35 - 2.358	2.72-2.74	
(4)	1011111			(6.2% error)	2.55+G11Z	2./3G11Z	0.5770	(0.33%)	(0.7%)	
(h)	15mm	5mm	15mm	2.06GHz	1.918GHz	2.13GHz	0.45%	1.913-1.924	2.12-2.136	
(b)	13111111	JIIIII	1311111	(7.4% error)	1.910UHZ	2.13UHZ	0.45%	(0.6%)	(0.7%)	
(0)	20m m	5m m	20	1.87GHz	1.69GHz	1 555 CH -	0.500/	1.682- 1.695	1.55- 1.56	
(6)	(c) 20mm		20m m	(10.6% error)	1.090112	1.555GHz	0.58%	(0.8%)	(0.6%)	

< 2-2> (a)-(c) , (

< 2-2>

		b/2	d	Resonant f	requency	Impedance bandwidth		
	a b/2		u u	DWM	Simulation	DWM	Simulation	
(4)	10 mm	5 mm	5 mm	2.9 GHz	3.04 GHz	0.4%.	0.65%	
(d)	10 111111	3 111111	5 mm	(4.6% error)	3.04 GHZ	0.4%.	(3.03-3.05 GHz)	
(2)	15 mm	5	5	2.54 GHz	2.7 GHz	0.460/	1%	
(e)	13 11111	3 111111	5 mm	(5.9% error)	2./ GHZ	0.46%	(2.68-2.71 GHz)	
(f)	20 mm	5	5 mm	2.4 GHz	2.6 GHz	0.54%	0.7%	
(1)	20 111111	3 111111	5 mm	(7.6% error)	2.0 GHZ	0.54%	(2.51-2.69 GHz)	

< 2-3> 10 (d) (f) 7

. (d) (f) d7\ , a7\ . < 2-3> 5%

		a b/2 d		Resonant frequency		Impedance bandwidth	
	a	0/2	a	DWM	Simulation	DWM	Simulation
(a)	10 mm	5 mm	25 mm	2 GHz	1.94 GHz	0.61%	0.5%
(g)	10 111111	3 111111	23 111111	(3% error)	1.94 UHZ	0.01%	(1.935-1.945 GHz)
(h)	12 mm	5 mm	20 mm	2 GHz	1.954 GHz	0.51%	0.6%
(11)	12 111111	3 111111	20 111111	(2.3% error)	1.934 UIIZ	0.5170	(1.948- 1.96 GHz)
(i)	15 mm	5 mm	17 mm	2 GHz	1.868 GHz	0.48%	0.7%
(i)	13 111111	3 111111	1 / 111111	(7% error)	1.000 GHZ	0.46%	(1.862- 1.875 GHz)
(i)	20 mm	5 mm	15 mm	2 GHz	1.85 GHz	0.51%	1.1%
(j)	20 111111	3 111111	13 11111	(8% error)	1.65 GHZ	0.51%	(1.84- 1.86 GHz)
(12)	25 mm	5 mm	14.1 mm	2 GHz	1.818 GHz	0.6%	0.7%
(k)	23 111111	J IIIIII	14.1 111111	(10% error)	1.010 UHZ	0.0%	(1.81- 1.827 GHz)

< 2-4> 2 GHz ($\varepsilon_r = 90$)

6% .

2 Meander line

1. Meander line

■ co-planar meander line .

가 . . .

meander line 가

. ,

1 2 dBi , 10

dB 7% .

HFSS .

■ Cellular PCS 가 가 가

, 가 IMT - 2000

•

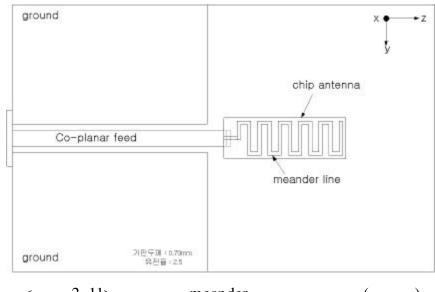
Whip/Helical .

가 , ,

가 , meander line

· 가 ,

가 , meader line


. meander line

, IMT - 2000

가 .

2. Meander line

■ meander line < 2-11> .

< 2-11> meander ()

■ co-planar 10.2 , 0.79 mm

50 . meander line

9.8 . meander line , meander line . meander line

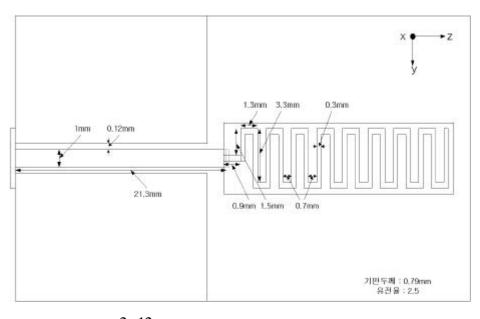
meander line . meander line z

, E-plane

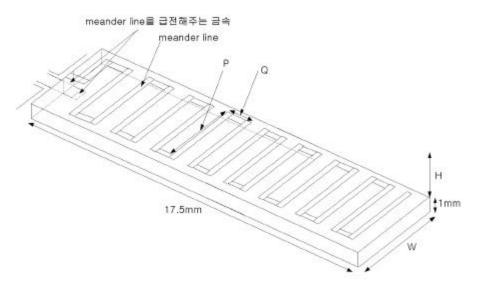
. <

. , Z

. у


2-12>

2-13> meander line .

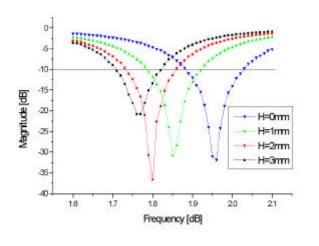

1.95 GHz , $pprox \lambda_0/\sqrt{arepsilon_e} = 66$ mm , meander line

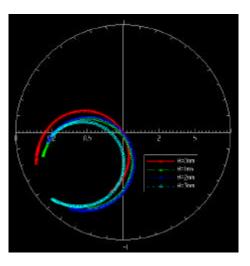
66.4 mm (1) , z

17.2 mm (0.26) [12,13,14].

< 2- 12>

< 2-13> meander line

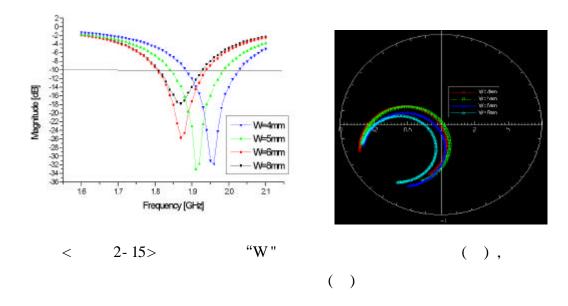

H=0 mm	1.95 GHz	1.88	2.02 GHz (7.2%)
H=1 mm	1.85 GHz	1.78	1.92 GHz (7.6%)
H=2 mm	1.79 GHz	1.73	1.86 GHz (7.3%)
H=3 mm	1.76 GHz	1.70	1.82 GHz (6.8%)


< 2-5>.

"H"

가 , meander line

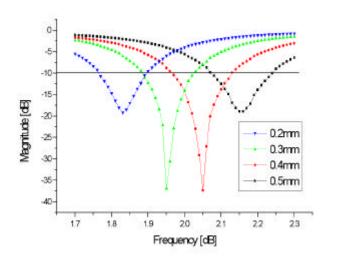
가 ,

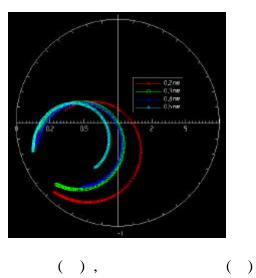


$$H = 0 \text{ mm}, P = 3.3 \text{ mm}, Q = 1 \text{ mm}$$

. < 2-15>()

_


W=4 mm	1.95 GHz	1.88	2.02 GHz (7.2 %)
W=5 mm	1.91 GHz	1.84	1.98 GHz (7.3 %)
W=6 mm	1.87 GHz	1.80	1.94 GHz (7.5 %)
W=8 mm	1.86 GHz	1.81	1.93 GHz (6.6 %)

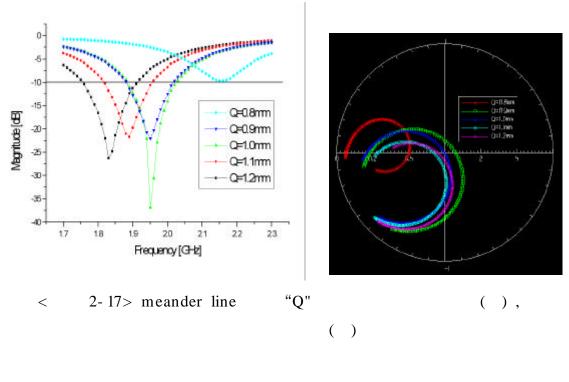


$$W=0.6 \text{ mm}$$

0.2 mm	1.83 GHz	1.76	1.89 GHz (7.1%)
0.3 mm	1.95 GHz	1.88	2.02 GHz (7.2%)
0.4 mm	2.05 GHz	1.96	2.13 GHz (8.3%)
0.5 mm	2.15 GHz	2.07	2.24 GHz (7.9%)

< 2-7>. Meander line

< 2-16> meander line

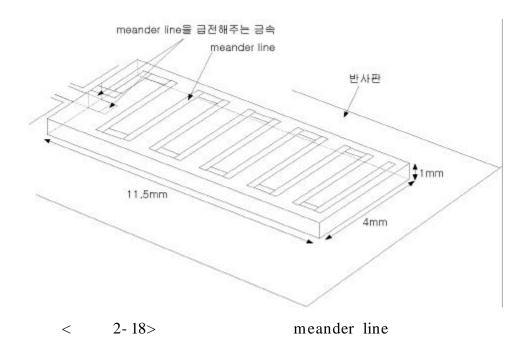

가 , meander line

.

■ < 2-17>() < 2-13> meander line "Q"7 0.8 mm 1.2 mm , . . , meander line . < 2-17>() meander line "Q" , < 2-4> .

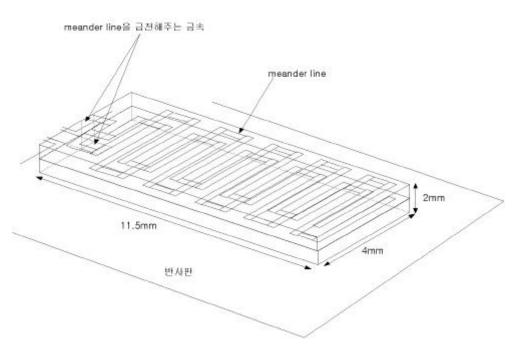
Q=0.8 mm	2.15 GHz		
Q=0.9 mm	1.95 GHz	1.88	2.01 GHz (6.6%)
Q=1 mm	1.96 GHz	1.88	2.02 GHz (7.2%)
Q=1.1 mm	1.89 GHz	1.81	1.95 GHz (7.4%)
Q=1.2 mm	1.83 GHz	1.75	1.91 GHz (8.7%)

< 2-8> Meander line "Q"

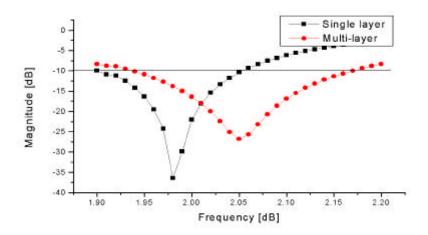


< 2-4> < 2-17> meander line , , 기

3

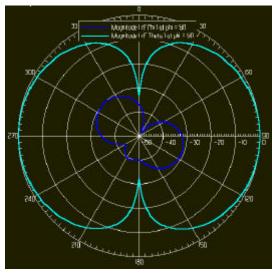

1. meander line

■ 18 . < 2-11> meander line 7\psi 42.4 mm (0.64) , z 14.2 mm (0.21) . , 1.91 2.05 GHz (140 MHz:7%) .


2. meander line

< 2-19> . < 2-18>meander line , 1.93 2.16 GHz (230 MHz:11.2%)

< 2-19> meander line


■ < 2-20>

< 2-20>

■ < 2-21> Meander line

far field

< 2-21> =0 ° E_{θ} (co-pol) E_{ϕ} (cross-pol) () , =90 ° E_{θ} (co-pol) E_{ϕ} (cross-pol) ()

3.

< 2-9>

フト (Spec ¹⁾)		²⁾ (%)	(/)				
1.	MHz	25 %	55 MHz	50- 100 MHz	1.91 2.05 GHz (140MHz:7%)	2.03 2.25 GHz (220MHz:10.3%)	1.93 2.16 GHz (230 MHz: 11.2%)
2.	dB	20 %	- 1	1	1.5	1.5	1.5
3.		15 %					
4.	mm	25 %	8 x 5 x 2.5	12 x 8 x 4	11.5 x 4 x 1	10.3 x 4 x 1	11.5 x 4 x 2
5.	g	15 %	0.3	0.5			

< 2-9>

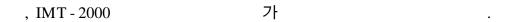
4

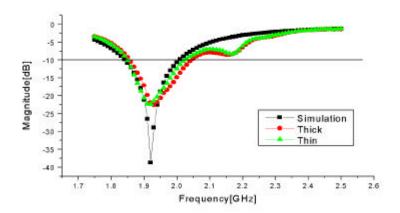
3 IMT - 2000

, Ansoft HFSS

IMT - 2000 ,

가 .

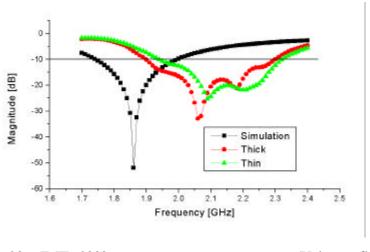

meander line soldering ,


. soldering "Thick", soldering 가

"Thin".

1.

< 2-22> < 2-10>



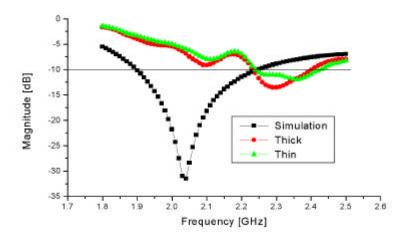
< 2-22> IMT - 2000

	Simulation	Measurement		
	Simulation	Thick	T hin	
DW	1.84 - 2.01 GHz	1.85 - 2.04 GHz	1.84 - 2.02 GHz	
BW	(170 MHz: 8.8 %)	(190 MHz: 9.8 %)	(180 MHz: 9.3 %)	

< 2-10> IMT-2000

(No reflector)

< 2-23> IMT - 2000

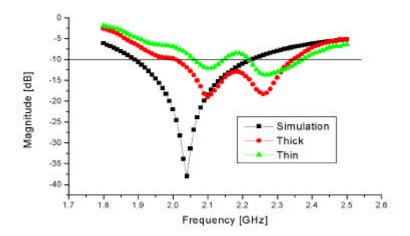

(Using reflector)

(No reflector)

	Cimulation	Measurement		
	Simulation	Thick	Thin	
DW	1.74 - 2 GHz	1.89 - 2.29 GHz	1.93 - 2.31 GHz	
BW	(260 MHz:13.9%)	(400 MHz:19.1%)	(380 MHz:17.9%)	

< 2-11> IMT-2000

(Using reflector)



< 2-24> IMT-2000 (Using reflector)

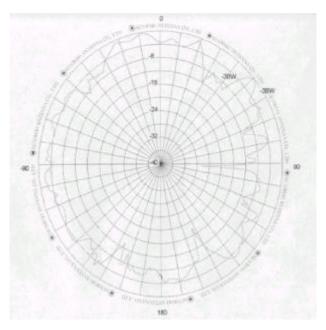
	Simulation	Measurement		
	Silituration	Thick	Thin	
BW	1.9 - 2.25 GHz	2.22 - 2.39 GHz	2.23 - 2.42 GHz	
D W	(350 MHz:16.9%)	(170 MHz:7.4%)	(190 MHz:8.2%)	

< 2-12> IMT-2000

(Using reflector)

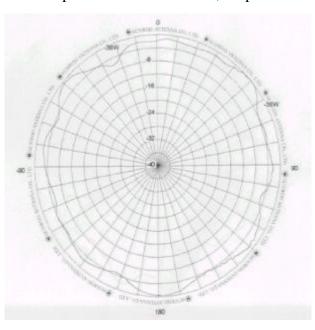
< 2-25> IMT - 2000

(Using reflector)

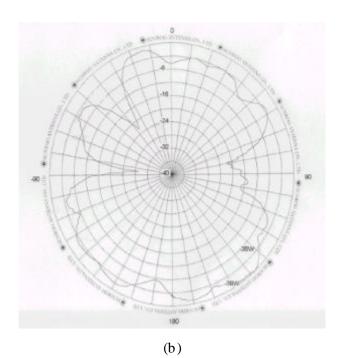

	Simulation	Measurement			
	Simulation	Thick	Thin		
BW	1.89 - 2.23 GHz	2 - 2.34 GHz	2.05 - 2.14 GHz(90 MHz)		
D W	(340 MHz:16.5%)	(340 MHz:15.7%)	2.21 - 2.37 GHz(160 MHz)		

< 2-13> IMT-2000

(Using reflector)


2.

E-plane ,



< 2-26> Microstrip line

(a)

< 2-27> Co-planar , H-plane(a) E-plane(b) (Co-pol)

3 RFIC 2

(IMT - 2000) RFIC
Excellics Semiconductor社 HEMT(: EPA480C-100F)

< 3-1>

항 목	목 표 사 양
동 작 주 파 수	1.92 - 1.98 GHz
P1-dB	27 dBm
전력부가효율(PAE)	40 %
선형전력이득	25 dB
IP ₃	40 dBm

< 3-1> RFIC

< 3-1>

가 AB

, (multi-stage)

•

2

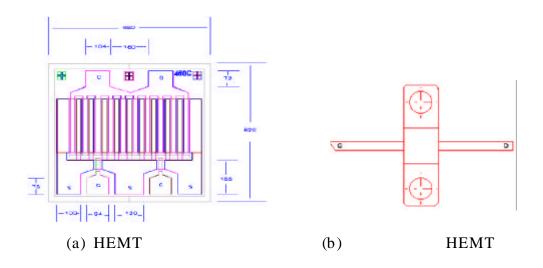
가

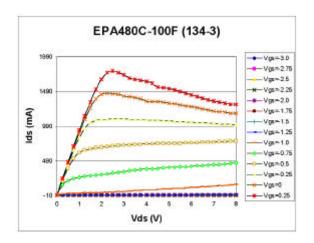
•

가 .

가 , 가 가 .

가 .


가 가 [15]


DC , S フト ・ HP-EEsof 社 RF Libra , S fitting フト

.

1 Power HEMT 가

1. HEMT

(c) Power HEMT (EPA 480C-100F)

< 3-1> Power HEMT ,

2. HEMT 가

(power transistor)

가

· 가 .

가 가 . 가

가 가 가

가 ,

, , 가

GaAs FET, HEMT , HBT (Heterojunction Bipolar Transistor)

. GaAs FET Curtice-cubic ,

[16], DC -

[10],

,

AC Statz-Pucel

```
HEMT
```

Statz-Pucel DC

AC [17]

.

가. DC

 $I_d = \beta (V_{gs} - V_T)^2 (1 + \lambda V_{ds}) \tanh (\alpha V_{ds}) - - - - (3-1)$

 β : (transconductance)

 λ : (drain conductance)

a: 가 가

- 가 가

. JFET MOSFET ,

- $(V_{DS} = E_{SAT} \times L, L)$

 $(E_{SAT}) .$

·

 $I_{ds} = Z V_{sat} \sqrt{2 \varepsilon q N_d} \left(\sqrt{(-V_T + V_B)} - \sqrt{(-V_{gs} + V_B)} \right) - (3-2)$

Z:

V_B: (built-in potential)

(3-2) 가 V_T

_

 V_{GS} 가 가 , 가

. (3-2) 가

. , (3-2) 가

가 .

가

.

 $I_{ds} \approx \beta (V_{gs} - V_T)^2 - - (3-3)$

JFET (Junction Field Effect Transistor)

.
$$V_{GS} - V_{T} = 0 \qquad . , \label{eq:VGS}$$
 (3-2)

.

$$I_{ds} = \frac{\beta (V_{gs} - V_T)^2}{1 + b(V_{gs} - V_T)} - - - - (3-4)$$

,

(tail)

가 . ,

 $I_{DS} - V_{GS}$ (3-4) β b

·

b /

GaAs

•

b . (3-4)

,

가 .

(3-1) tanh 가

. Statz-Pucel P

tanh .

$$P = 1 - \left(1 - \frac{\alpha V_{DS}}{n}\right)^n$$
, $n = 2$ 3 - - - (3-5)
 $(V_{DS} > n/\alpha)$ tanh 7 \dagger 1 . $V_{DS} = 0$

 $\alpha \hspace{1cm} tanh (\alpha V_{DS}) \hspace{1cm} .$

$$I_{ds} = \frac{\beta (V_{gs} - V_T)^2}{1 + b(V_{gs} - V_T)} \left\{ 1 - (1 - \frac{\alpha V_{DS}}{3}) \right\} 1 + \lambda V_{DS}) - - - (3-6a)$$
for $0 < V_{DS} < 3/\alpha$

$$I_{ds} = \frac{\beta (V_{gs} - V_T)^2}{1 + b(V_{gs} - V_T)} (1 + \lambda V_{DS}) \quad \text{for } V_{DS} > 3/\alpha - - (3-6b)$$

[18]-[21] $. \ GaAs$ GaAs 가 . Van der Ziel C_{GS} V_{DS} FET , V_{GS} $, V_{DS}$ 가 가 $V_{DS} = 0$ C_{GD} C_{GS} C_{GD} 가 0 Van der Ziel C_{GS} $C_{\scriptscriptstyle{\mathrm{GD}}}$ 가 가 Van der Ziel , V_{DS} $V_{\text{GS}} \qquad V_{\text{DS}}$. Statz-Pucel Q_{GS} 1/2- Q_{GS} ,

 $\Delta Q_{gs} = Q_g(V_{gs} + \Delta V_{gs}, V_{gd}) - Q_g(V_{gs}, V_{gd}) - - - (3-7a)$

 $V_{\text{GS}} = V_{\text{DS}} \text{I} + V_{\text{GS}}, \quad V_{\text{DS}}$

 V_{DS} . ,

$$\Delta Q_{g\tau} = \frac{1}{2} (Q_g(V_{g\tau} + \Delta V_{g\tau}, V_{gd} + \Delta V_{gd}) - Q_g(V_{g\tau}, V_{gd} + \Delta V_{gd})$$

$$+ Q_g(V_{g\tau} + \Delta V_{g\tau}, V_{gd}) - Q_g(V_{g\tau}, V_{gd})) - - - - (3-7b)$$

$$Q_{\sigma\sigma}$$

$$\Delta Q_{gd} = \frac{1}{2} (Q_g(V_{g\tau} + \Delta V_{g\tau}, V_{gd} + \Delta V_{gd}) - Q_g(V_{g\tau}, V_{gd} + \Delta V_{gd})$$

$$+ Q_g(V_{g\tau}, V_{gd} + \Delta V_{gd}) - Q_g(V_{g\tau}, V_{gd})) - - - - - (3-7c)$$

$$(3-7b) \quad (3-7c)$$

$$V_{\sigma\sigma} T$$

$$Q_g$$

$$\Delta Q_g = \Delta Q_{g\tau} + \Delta Q_{gd}$$

$$= Q_g(V_{g\tau} + \Delta V_{g\tau}, V_{gd} + \Delta V_{gd}) - Q_g(V_{g\tau}, V_{gd}) - (3-8)$$

$$V_{\sigma\sigma} T$$

$$Q_{\sigma\sigma} = 2C_{g\sigma\sigma} V_g (1 \cdot \sqrt{1 \cdot \frac{V_{g\sigma}}{V_g}}) + C_{g\sigma\sigma} V_{gd} - - - - (3-9a)$$

$$V_{\sigma\sigma} = 0$$

$$V_{\sigma\sigma$$

 Q_g

,

$$C_{gs} = \frac{dQ_g}{dV_{gs}} = \frac{C_{gs0}}{\sqrt{1 - \frac{V_{gs}}{V_B}}}$$

$$C_{gd} = \frac{dQ_g}{dV_{gd}} = C_{gd0} - - - - - (3-10)$$

•

$$C_{gs} = \frac{dQ_g}{dV_{gs}} = C_{gd0}$$

$$C_{gd} = \frac{dQ_g}{dV_{gd}} = \frac{C_{gs0}}{\sqrt{1 - \frac{V_{gd}}{V_B}}}$$

,

 $V_{ds} = 0$

(3-9a) (3-9b)

 $Q = 2C_{gs0}V_B(1-\sqrt{1-\frac{V_{eff1}}{V_B}}) + C_{gd0}V_{eff2} - - - (3-11)$ $(-V_{eff1}) \quad (-V_{gs}) \quad (-V_{gd}) \quad , \quad (-V_{eff2})$

$$V_{eff1} = \frac{1}{2} \left\{ V_{gs} + V_{gd} + \sqrt{(V_{gs} - V_{gd})^2 + \Delta^2} \right\} - - (3-12a)$$

$$V_{eff2} = \frac{1}{2} \left\{ V_{gs} + V_{gd} - \sqrt{(V_{gs} - V_{gd})^2 + \Delta^2} \right\} - - (3-12b)$$

$$= 0 \quad . \quad \text{zero7}$$

(3-11) - , -

 $C_{gs} = \frac{C_{gs0}}{\sqrt{1 - \frac{V_{eff1}}{V_{-}}}} \frac{1}{2} \left\{ 1 + \frac{V_{gs} - V_{gd}}{\sqrt{(V_{gs} - V_{gd})^{2} + \Delta^{2}}} \right\}$

$$+ C_{gd0} \frac{1}{2} \left\{ 1 - \frac{V_{gs} - V_{gd}}{\sqrt{(V_{gs} - V_{gd})^2 + \Delta^2}} \right\} - - - (3-13a)$$

$$C_{gd} = \frac{C_{gs0}}{\sqrt{1 - \frac{V_{eff1}}{V_B}}} \frac{1}{2} \left\{ 1 - \frac{V_{gs} - V_{gd}}{\sqrt{(V_{gs} - V_{gd})^2 + \Delta^2}} \right\}$$

$$+ C_{gd0} \frac{1}{2} \left\{ 1 + \frac{V_{gs} - V_{gd}}{\sqrt{(V_{gs} - V_{gd})^2 + \Delta^2}} \right\} - - - (3-13b)$$

$$- V_{gs} - V_{gd}$$

$$Q_g - (3-11) - (3-12)$$

$$- (3-13a) - C_{gs} - (3-2) - (3-6) - (3-16a)$$

$$- (3-13a) - C_{gs} - (3-16a) - (3-16a) - (3-16a) - (3-16a)$$

$$- (3-16a) - (3-16$$

. V_{max} 가 . Gummel-Poon .

 $V_{
m m\ ax}$ $V_{
m B}$

가

, V_{eff1} \nearrow \uparrow \uparrow \downarrow V_{B} \rightarrow \uparrow . $V_{\text{eff1}}{>}V_{\text{max}}$ Q_{g}

$$Q_{g} = C_{gs0} \left\{ V_{B} (1 - \sqrt{1 - \frac{V_{max}}{V_{B}}}) + \frac{V_{eff1} - V_{max}}{\sqrt{1 - \frac{V_{max}}{V_{B}}}} \right\} + C_{gd0} V_{eff2}$$
for $V_{eff1} V_{max} - - - - - (3-14)$

•

,

 $C_{gs} = 0$,

() Statz-Pucel V_{new}

,
$$V_{\text{eff1}}$$
 , V_{T} .

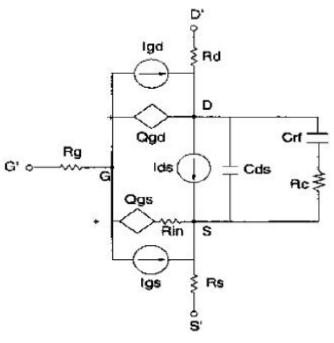
,
$$V_{\text{new}}$$
 (- V_{eff1}) (- V_{T}) . (3-12)

$$Vnew = \frac{1}{2} \{ V_{eff1} + V_T + \sqrt{(V_{eff1} - V_T)^2 + \delta^2} \} - - (3-15)$$

$$(3-11)$$
 V_{eff1} - ,

-

$$C_{gs} = \frac{C_{gs0}}{\sqrt{1 \cdot \frac{V_{new}}{V_{B}}}} \cdot \frac{1}{2} \left\{ 1 + \frac{V_{eff1} \cdot V_{T}}{\sqrt{(V_{eff1} \cdot V_{T})^{2} + \delta^{2}}} \right\}$$

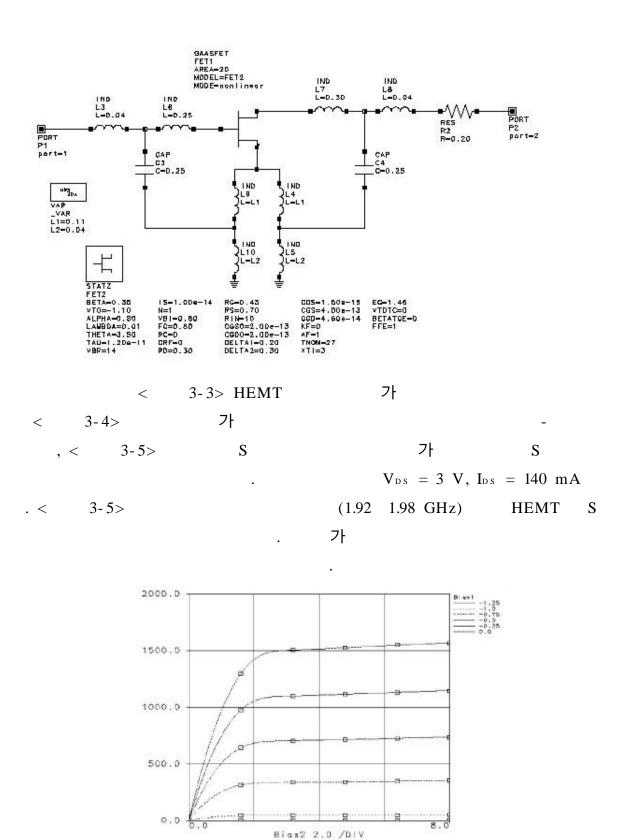

$$* \frac{1}{2} \left\{ 1 + \frac{V_{gs} \cdot V_{gd}}{\sqrt{(V_{gs} \cdot V_{gd})^{2} + (1/\alpha)^{2}}} \right\}$$

$$+ C_{gd0} \frac{1}{2} \left\{ 1 \cdot \frac{V_{gs} \cdot V_{gd}}{\sqrt{(V_{gs} \cdot V_{gd})^{2} + (1/\alpha)^{2}}} \right\} - (3-16)$$

$$C_{gd} = \frac{C_{gs0}}{\sqrt{1 \cdot \frac{V_{new}}{V_{B}}}} \cdot \frac{1}{2} \left\{ 1 + \frac{V_{eff1} \cdot V_{T}}{\sqrt{(V_{eff1} \cdot V_{T})^{2} + \delta^{2}}} \right\}$$

$$* \frac{1}{2} \left\{ 1 \cdot \frac{V_{gs} \cdot V_{gd}}{\sqrt{(V_{gs} \cdot V_{gd})^{2} + (1/\alpha)^{2}}} \right\}$$

$$+ C_{gd0} \frac{1}{2} \left\{ \!\! \left\{ \!\! \begin{array}{l} + \frac{V_{gs} - V_{gd}}{\sqrt{\left(V_{gs} - V_{gd}\right)^2 + \left(1/\alpha\right)^2}} \right\} - - \left(3\text{-}17\right) \\ \\ (3\text{-}14) \quad V_{eff1} \quad (3\text{-}15) \quad V_{new} \quad V_{eff1} \gt V_{max} \quad Q_g \\ \\ V_{GS} \quad , \quad V_{DS} \quad & (3\text{-}16) \quad C_{gs} \quad , \\ \\ C_{gs} \quad V_{GS} \\ , \quad V_{GS} \gt \mid \quad V_{T} \quad C_{gs} \quad (\delta) \\ \\ zero \quad & C_{gs} \\ \\ - \quad & \\ N_{GS} \quad & \\ \cdot \quad$$

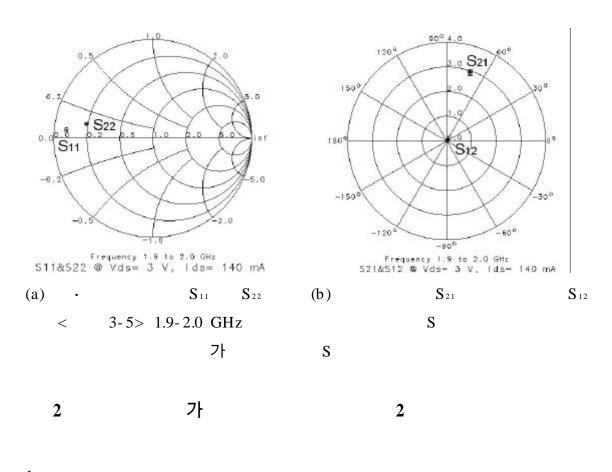

< 3-2> Statz-Pucel

HEMT 가

HEMT I- V

. AB $< 3-2> V_{GS} =$

```
-0.9 \text{ V}, \text{ V}_{DS} = 3 \text{ V}
                                          , Statz-Pucel
DC
                                               DC
Statz-Pucel
 가
                                         Statz-Pucel
  AC
   가 가 .
                                      DC AC 가
                가
                                              Statz- Pucel
                 가
                                    AC
                                         가
                       Statz-Pucel
    (<
          3-1(a)>)
                         (< 3-1(b)>) Statz-Pucel
HEMT
                         가
     가
                                             가
                          lead
                          S
                          가
1
[23] S
                         fitting
                            3-3> < 3-1>(b)
   HEMT 가
```



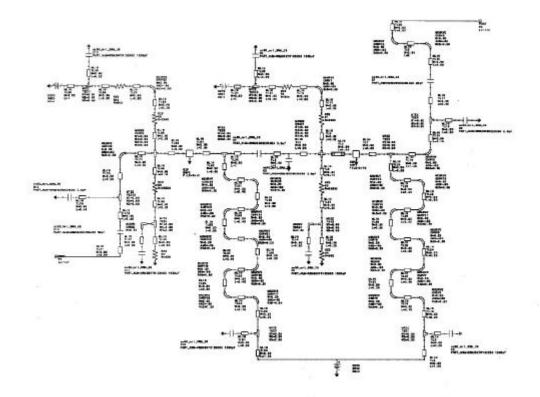
Power HEMT

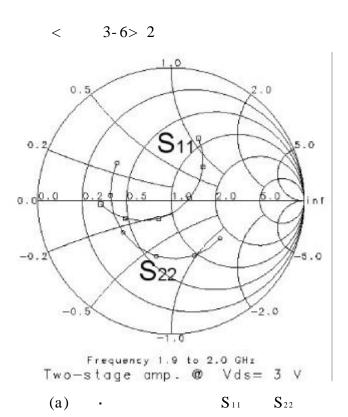
가

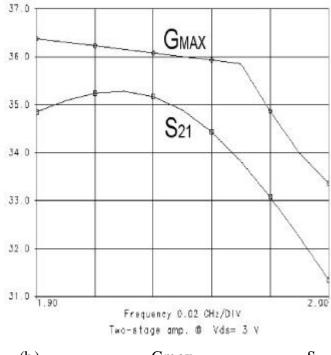
3-4>

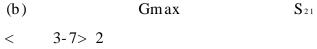
<

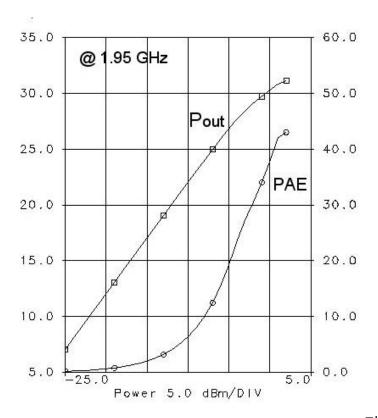
1.

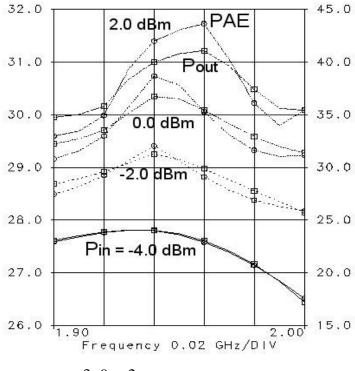

. $(I_{\text{DS}} \,=\, 140 \text{ mA},$ $V_{\text{GS}} \,=\, -\, 0.9 \text{ V}, \, V_{\text{DS}} \,=\, 3.0 \text{ V})$.

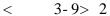

(conjugate) ,

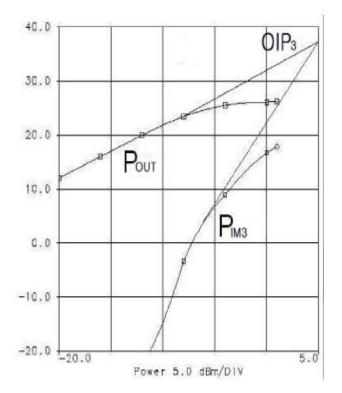

2


(interstage matching)


```
가 < 3-6>
10.2, = 0.635 \text{ mm} (Duroid)
가 50 0.6 mm
               RF
                            , DC
                                         1.95
GHz /4
                                       Choke Coil
                                      . 1.92 1.98
<
    3-7> 2
                S_{21} 33 dB ,
GHz
                                      ± 1 dB
                (return loss) 1.95 GHz 21 dB 가 ,
1.92 1.98 GHz
                7 dB
                                가
 < 3-8> 2
                                    0 dBm
   , < 3-9>
                          . 1.95 GHz
      31 dBm 38 % 가
                                      . < 3-8>
                0 dBm 1.92- 1.98 GHz
             가 32 %
29 dBm ,
< 3-10> two-tone
                        OIP_3(3)
                                             3
                 P_{1-dB} one-tone
dB .
                            OIP<sub>3</sub> 37 dBm
3 dB
```







< 3-10> 2

 OIP_3

3

2 PHEMT

,

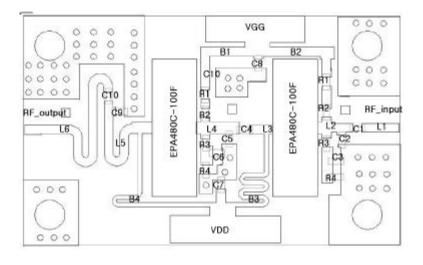
•

1.

 $(1 \times 0.5 \text{ mm}^2)$

Murata社 $(1 \times 0.5 \text{ mm}^2)$. 10.2, = 0.635 mm, = 0.0178 mm 社

.

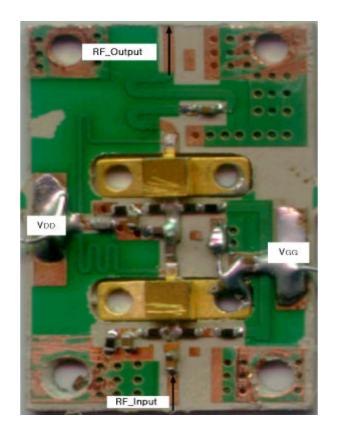

< 3-11> 2

2 . < 3-11 (a)> 2

, < 3-11 (b),(c)>

. < 3-12> 2

 1.5×2.4



	(mm)	(mm)	()
L1	4	0.6	50
L2	2.3	0.6	50
L3	1.4	0.6	50
L4	2.4	0.6	50
L5	5.6	0.6	50
L6	11.4	0.6	50
B1	6	0.6	50
B2	6	0.6	50
В3	13	0.3	75
B4	13	0.3	75

(b)

	(pF)		()
C1	30	R1	500
C2	3	R2	2.5k
C3	1000	R3	2.7k
C4	3	R4	500
C5	3		
C6	1000		
C7	1000		
C8	1000		
C9	2		
C10	30		

(c)

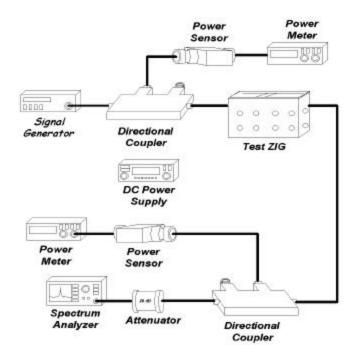
< 3-12> 2

2. RF

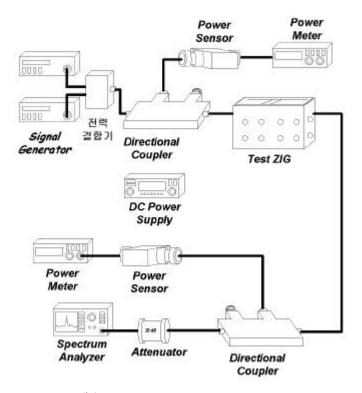
가 . RF

S ,

,


IMT - 2000 2 < 3-13>(a), (b) . one-tone

test 1 1 ,


· RF RF

, two-tone test 2 ,

가 RF < 3-13(b)> .

(a) one-tone test

(b) two-tone test

< 3-13> RF

```
(1.92 1.98 GHz) , -30 dBm
                                  30 dBm
                                                  - 20 dBm
  <
         3- 13>
                         RF
                                                         2
             RF
                                                                                <
3-2>, < 3-3>
                    - 20 dB
                                        - 20.65 dB
                                                           0.65 dB
                    - 10 dB
                                        - 10.57 dB
                                                           0.64 dB
                      0 dB
                                        - 0.66 dB
                                                           0.66 \, dB
                      5 dB
                                         4.34 dB
                                                           0.66 dB
                     10 dB
                                         9.31 dB
                                                           0.69 dB
                                                           0.66 \, dB
             3-2>
         <
                      0 dB
                                        - 21.17 dB
                                                           20.51\ dB
                      5 dB
                                        - 16.24 dB
                                                           20.58 dB
                     10 \, dB
                                        - 11.23 dB
                                                           20.54\ dB
                                                          20.54 dB
```

(

1.95 GHz

20 dB

)

< 3-3>

3-2>

0.66 dB

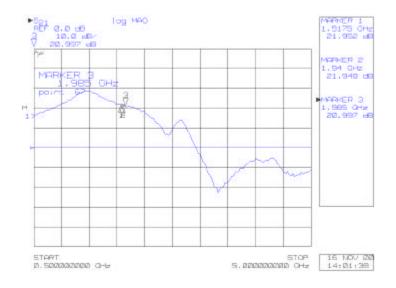
0.66 dB

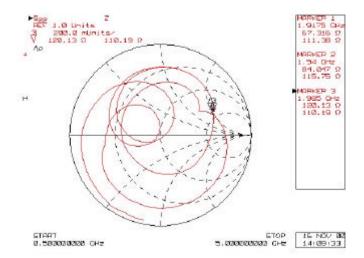
$$. < 3-3>$$
 , 20 dB

20.54 dB .

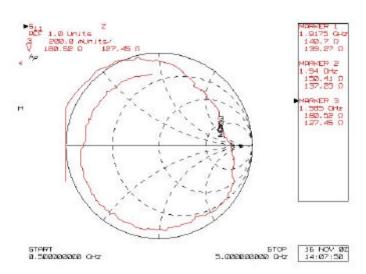
20.54 dB . .

3.

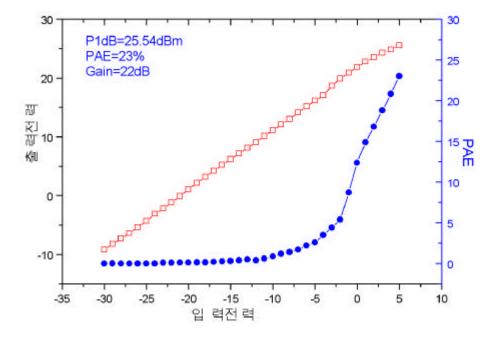

$$V_{GS} = -0.8 \ V, \ V_{DS} = 3 \ V$$

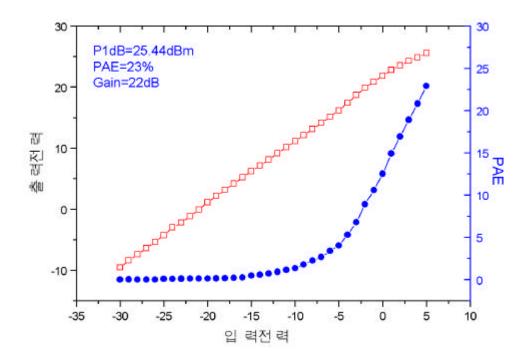

2 .

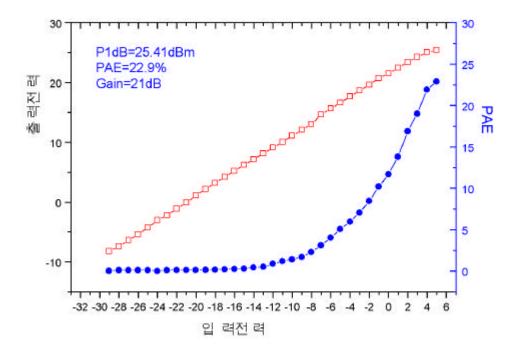
21 dB . 500


MHz 28 dB ,

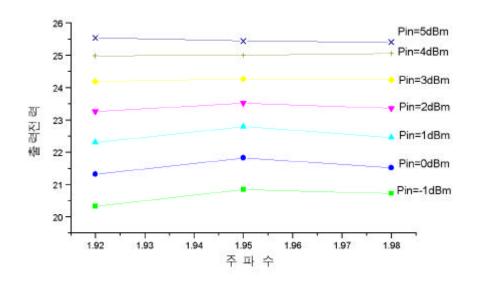
< 3-16> .

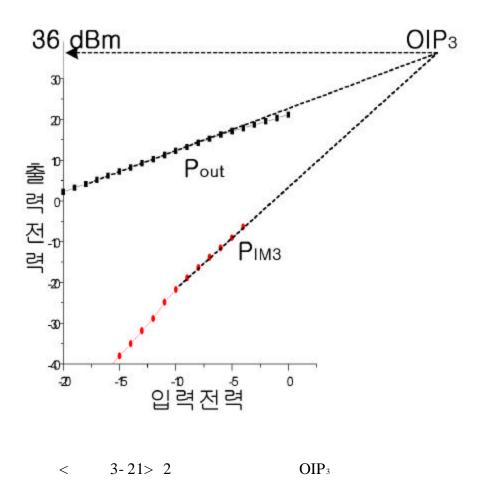



< 3-15> 2 S_{22}




1.92- 1.98 GHz 5 dBm 25.4 dBm





< 3-20> 2


```
two-tone test . <
3-13>(b)
                           2
                                                                             \mathbf{f}_1
                                                     IM<sub>3</sub>(1.94 GHz,
= 1.945 \text{ GHz}, f_2 = 1.955 \text{ GHz}
                                                                      1.96
GHz
                      )
                                                OIP<sub>3</sub> (3
< 3-21> two-tone
                                                                         )
36 dBm
                                     4 dB
가
 가
```

4 HEMT

,

, 가 RF (,)

가

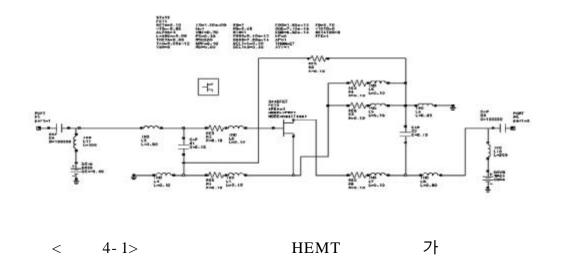
[24]. trade-off [25]7\;\tag{25},

•

[26].

<u>.</u>

가 .


1

 $V_{\text{DS}} = 3 \text{ V}, V_{\text{G}} = -1 \text{ V}, I_{\text{DS}} = 20 \text{ mA}$. < 4-1>

< 4-1> RFIC

1 PHEMT 가

HP社 ATF-35143 PHEMT 가 Statz 가 [27].

Beta =0.1	FC = 0.35	KF = 0	VBR = 5	EG = 0.7
VTO = -0.95	Rc = 250	AF = 1	Is = 1e-09	VT OT C = 0
Alpha = 4	CRF 0.1	TNOM = 27	N = 1	BETATCE = 0
Lambda = 0.09	RD = 1.5	XTI = 1	VBI = 0.7	FFE = 1
Theta = 0.3	RG = 7	Delta1 = 0.3	RIN = 1	CGS = 7.1e-13
T au = 5e-12	RS = 0.45	Delta2 = 0.2	CDS = 1.8e-13	CGD = 6.2e - 14

가

< 4-2> HP ATF-35143 HEMT

2

가

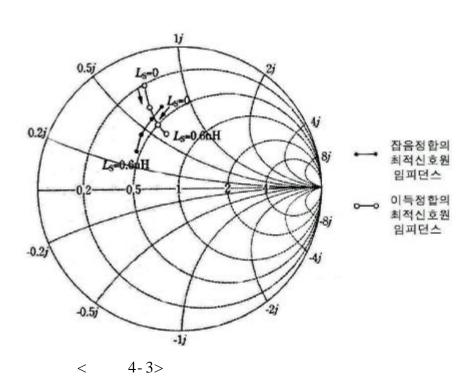
[32]. , 가 .

가 가 . , < 4-2>

.

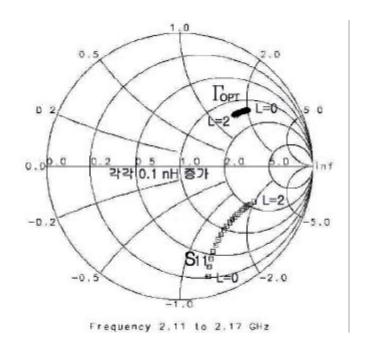
, (F_{min})

. < 4-3>


, 가 ,

가 가

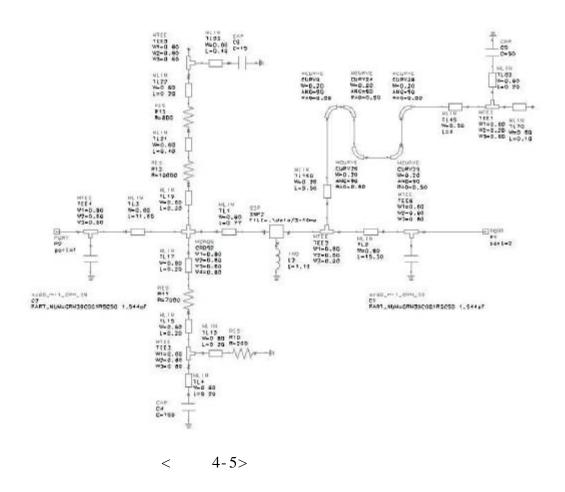
[26].


4-2>

<

(HP社 ATF-35143) 30 dB 2 OPT [28, 29, 30]. 1. 가 OPT $(F_{m \text{ in}})$ isolator [26]. isolator , 90 ° hybrid 가 가가 가 $(18 \times 12 \text{ mm}^2)$ 가 $(F_{\,\text{m in}}\,)$ 가 **PHEMT** 4-4> S_{11} . < 4-3> OPT G_{max} , F_{min}

1.1 nH



< 4-4> Ls PHEMT (ATF-35143) OPT S_{11}

		S11*		OPT	G _{max} (dB)	$F_{m in} (dB)$
	mag	ang	mag	ang	Gmax (GD)	
L=0	0.846	76.2028	0.6632	39.6359	18.17	0.29
L=0.1	0.7813	74.2983	0.6587	39.8092	18.25	0.29
L=0.3	0.6806	68.9903	0.6496	40.1522	18.08	0.29
L=0.5	0.6445	62.3185	0.6403	40.4896	17.58	0.29
L=0.7	0.5766	55.1630	0.6307	40.8201	17.00	0.29
L=0.9	0.5599	48.3004	0.6209	41.1425	16.17	0.29
L=1.1	0.5576	42.2109	0.6109	41.4553	14.9	0.29
L=1.3	0.5646	37.0666	0.6006	41.7570	14.14	0.28
L=1.5	0.5770	32.8364	0.5902	42.0459	13.68	0.28

< 4-3> S₁₁* OPT

2.14 GHz OPT (0.64 40.5)

 S_{11} S_{22} < 4-6>

S11 가

. S₁₁

. S₂₂

50 . 2.11-2.17 GHz -25.5

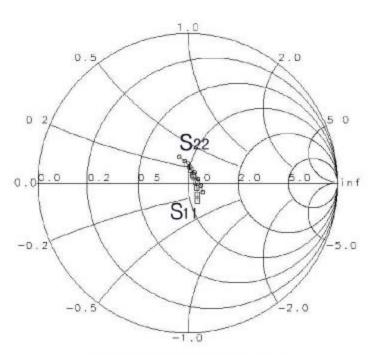
dB , -27.7 dB

RF

< 4-7> S_{21} S_{21}

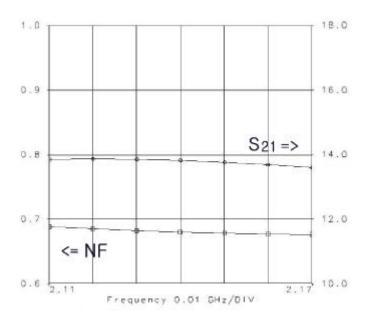
13.6 dB

•


. 0.69 dB .

(gate) -0.6 V가 가

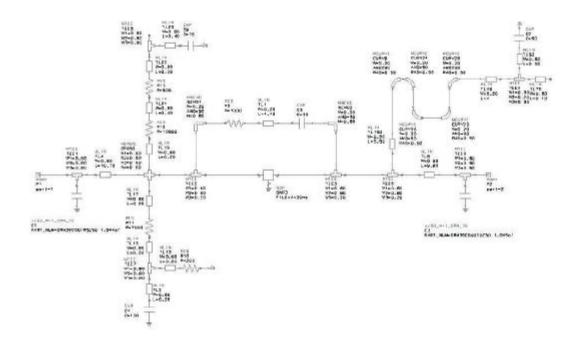
. (drain) /4 bypass


. PHEMT

capacitor . capacitor

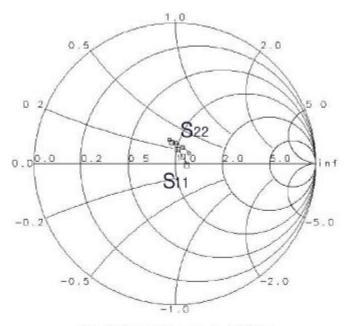
Frequency 2.11 to 2.17 GHz

< 4-6> S_{11} S_{22}



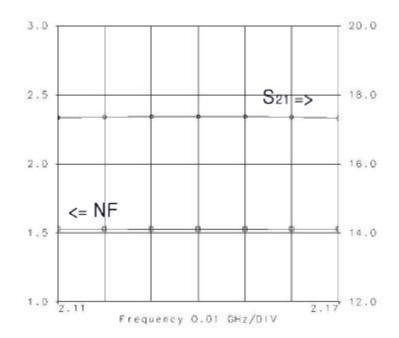
< 4-7> (NF) (S₂₁)

2.

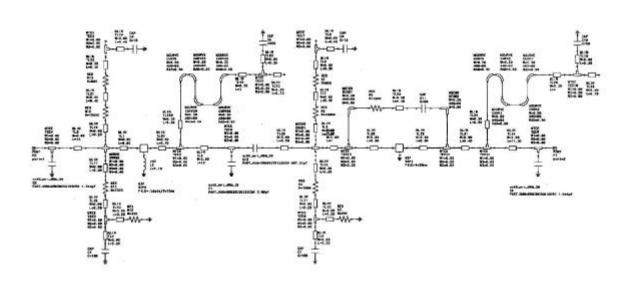

 (S_{21}) 13.6 dB 30 dB 15 dB RF가 - 10 dB 4-8> 1 + A(: , A:[31]. < 4-9>) \mathbf{S}_{11} S_{22} $. S_{11}$ S_{22} . S₂₂ RF 50 1.54 dB S_{21} 17.3 dB < 4- 10>

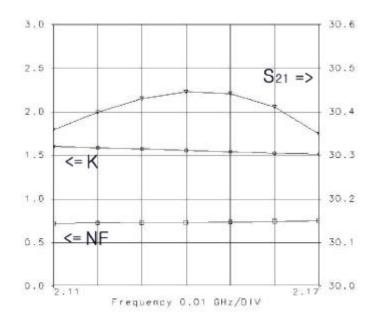
.

< 4-8>

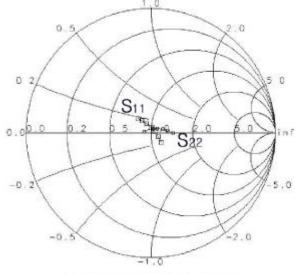

<

Frequency 2.11 to 2.17 GHz


4-9> S₁₁

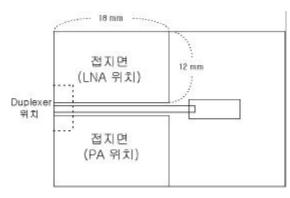

 S_{22}

$$<$$
 4- 10> (NF) (S₂₁)


3. 2

< 4-12> 2

1.4



Frequency 2.11 to 2.17 GHz

4. 2

2

가 . < 4-14> 가 .

< 4- 14> (RFIC

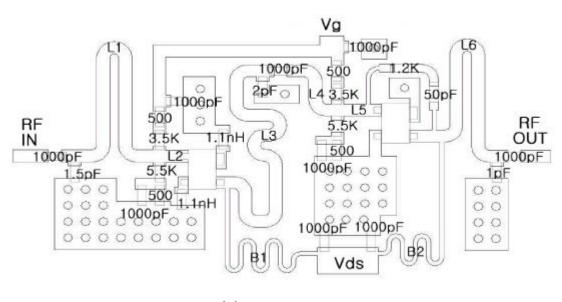
HP-EEsof 社 Libra

, AutoCAD

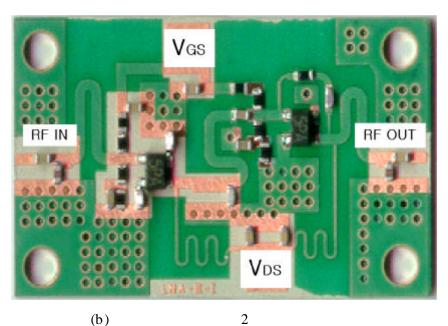
, 50

. 2

가 18 x 12 mm²


(10.3) (0.635 mm)

 $0.6 \ mm \hspace{1.5cm} , \ RF \hspace{1.5cm} coupling$


[27]. < 4- 15>

, < 4-4>

.

(a)

(b) 2 < 4-15> 2

	(mm)	(mm)	()
L1	12	0.6	50
L2	0.8	0.6	50
L3	15	0.6	50
L4	5.2	0.6	50
L5	1.5	0.6	50
L6	2.5	0.6	50
B1	13.5	0.2	75
B2	13.5	0.2	75

(a)

C1	1000 pF	R1	5.5k
C2	1.5 pF	R2	500
C3	1000 pF	R3	3.5k
C4	2 pF	R4	500
C5	1000 pF	R5	500
C6	1000 pF	R6	3.5k
C7	50 pF	R7	500
C8	1 pF	R8	1200
C9	1000 pF	R9	500
C10	1000 pF	L1	2.2 nH
C11	1000 pF	L2	2.2 nH

(b)

< 4-4>

3 2

2

2.11 2.17 GHz

 $V_{DS} = 3 V, V_{G} = -1 V, I_{DS}$

= 20 mA

2

8 10 GHz

•

.

S

1

가

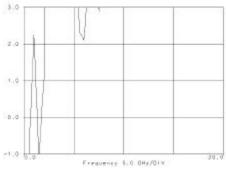
S

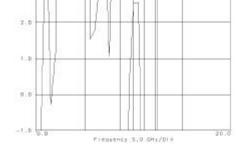
. ,

가 S

[33].

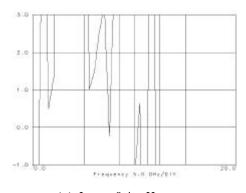
< 4- 16>

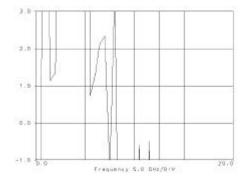

0 20 GHz

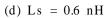

K

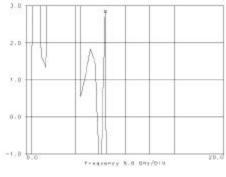
가 0 nH 0.2 nH 가

7 12.5 GHz


,







(c)
$$Ls = 0.4 \text{ nH}$$

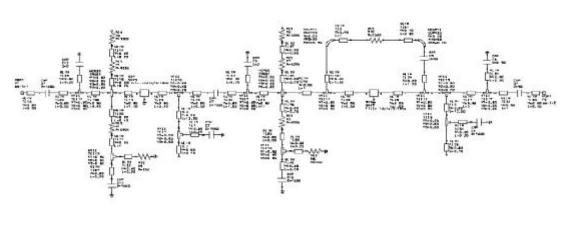
(e) Ls = 0.8 nH

(f) Ls = 1.1 nH

< 4- 16>

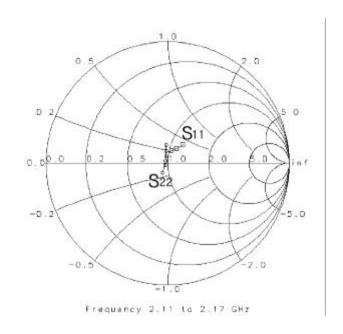
(Ls)

4 OPT

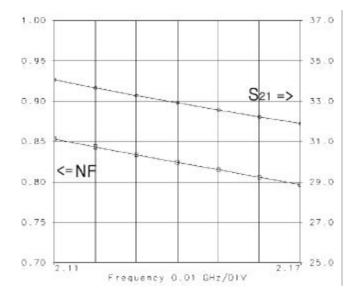

trade off

1.

3


VSWR . < 4-17> 2 , < 4-18>, < 4-19> 0.85 dB

32 dB , · VSWR 1.5



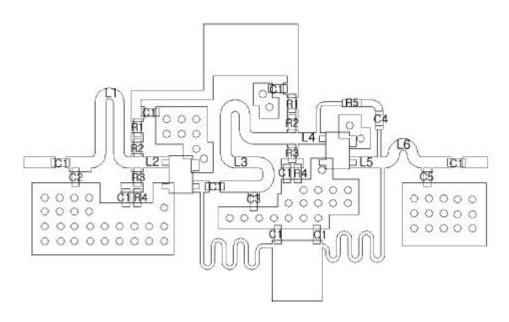
< 4- 17>

2

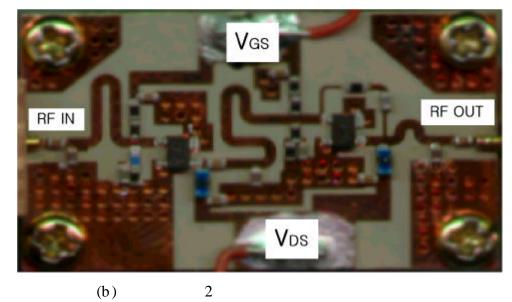
< 4-18> 2 S_{11} S_{22}

< 4-19> 2

0.85 dB


0.76 dB

32 dB 2 dB


2.

10.2, 0.635 mm

4-20> . <

2 (a)

(b)

4-20> <

2

	(mm)	(mm)	()
L1	9.4	0.6	50
L2	1.4	0.6	50
L3	11	0.6	50
L4	1	0.6	50
L5	1.5	0.6	50
L6	3	0.6	50

(a)

C1	1000 pF	R1	5.5k
C2	2 pF	R2	500
C3	2 pF	R3	3.5k
C4	51 pF	R4	500
C5	0.5 pF	R5	500

(b)

2

OPT

 $V_{DS} = 3 V, V_{G} = -1 V$

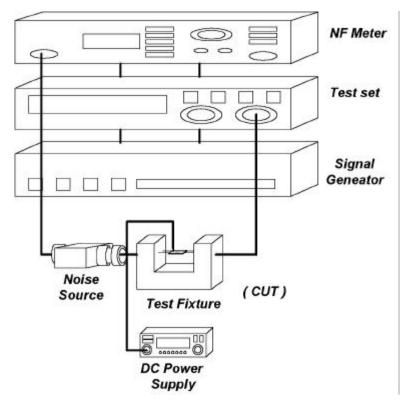
4-21> <

HP8970(Noise Figure Meter) 가

2.11 2.17 GHz(60MHz)

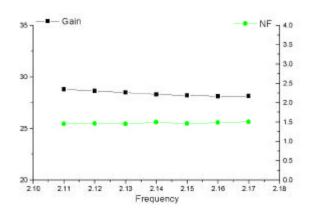
HP8971(NF

Test Set


)

< 4-21>

(< 4-21> DUT)


가 .

(Calibration)

< 4-21>

< 4-22> 2.11 GHz 28.7 dB 1.45 dB, 2.14 1.49 dB, 28.3 dB GHz 28.1 dB 2.17 GHz 1.49 dB, (60 MHz) 2.11 2.17 GHz 1.5 dB 28 dB (flatness) 0.1 dB **±** 1 dB

	Ga in	NF
2.11	28.79	1.453
2.12	28.63	1.456
2.13	28.48	1.453
2.14	28.29	1.49
2.15	28.19	1.463
2.16	28.11	1.481
2.17	28.13	1.498

< 4-22> OPT (NF)

 \mathbf{v}_{DS} , \mathbf{v}_{DS} =

2.5 V, 3 V, 3.6 V

2.14 GHz , < 4-24> .

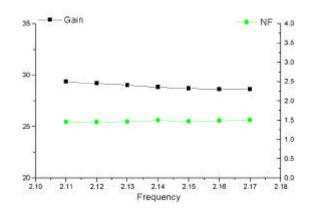
 V_{DS} 7 | 2.5 V 3.6 V , 1.5 dB ± 0.08 dB

 $, 28 dB \pm 0.01 dB$

. , $I_{D\,S}$

. $\langle 4-25 \rangle$. V_{DS} 3 V

V_G I_{D S}가 38, 43, 49, 55 mA

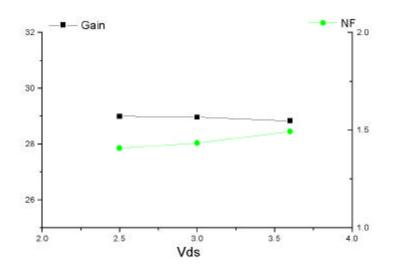

. 1.5 dB ± 0.8 dB ,

 $28.5 \text{ dB} \pm 0.8 \text{ dB}$

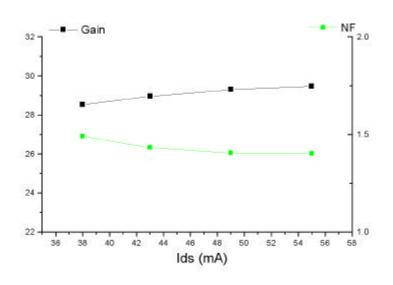
35] -•	— Gain							NF]4.0
30 -			 -				_	- 3.0 - 2.5
25 -	•	÷	•	•	•	•	_•	- 2.0 - 1.5 - 1.0
2.10	2.11	2.12	2.13	2.14	2.15	2.16	2.17	0.5

	Ga in	NF
2.11	29.6	1.365
2.12	29.38	1.391
2.13	29.2	1.374
2.14	28.99	1.407
2.15	28.87	1.388
2.16	28.79	1.393
2.17	28.78	1.435

(a)
$$V_{DS} = 2.5 \text{ V}$$
, $I_{DS} = 44 \text{ mA}$

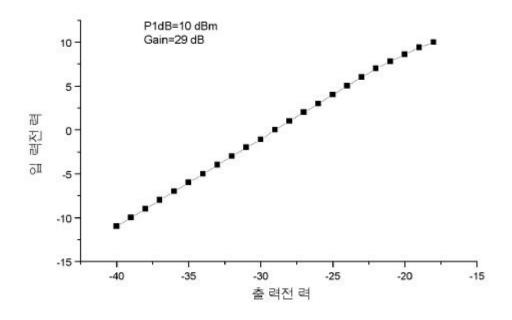


	Ga in	NF
2.11	29.37	1.452
2.12	29.2	1.454
2.13	29.02	1.465
2.14	28.83	1.492
2.15	28.72	1.474
2.16	28.64	1.484
2.17	28.64	1.507

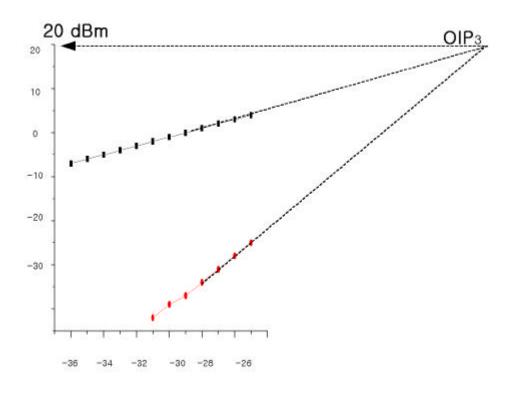

(b)
$$V_{DS} = 3.6 \text{ V}$$
, $I_{DS} = 44 \text{ mA}$

$$<$$
 4-23> $I_{DS} = 44 \text{ mA}$

4-23>
$$I_{DS} = 44 \text{ mA}$$
 , (a) $V_{DS} = 2.5 \text{ V}$, (b) $V_{DS} = 3.6 \text{ V}$



$$<$$
 4-24> (2.14 GHz)
 V_{DS} (I_{DS} = 44 mA



$$<$$
 4-25> (2.14 GHz)
 I_{DS} ($V_{DS} = 3 V$

4-27> OIP₃ 20 dBm

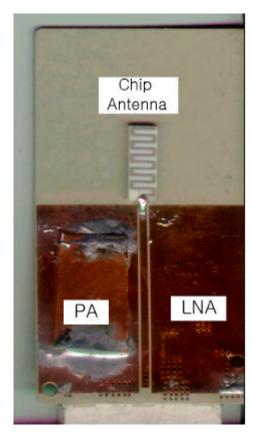
< 4-26> 2 • (@ 2.14 GHz)

5 **RFIC**

RFIC

. < 5-1>

PA


Chip

Antenna

(a) Co-planar

(b)

LNA

(a) Co-planar () (b)

()

5-1> <

RFIC

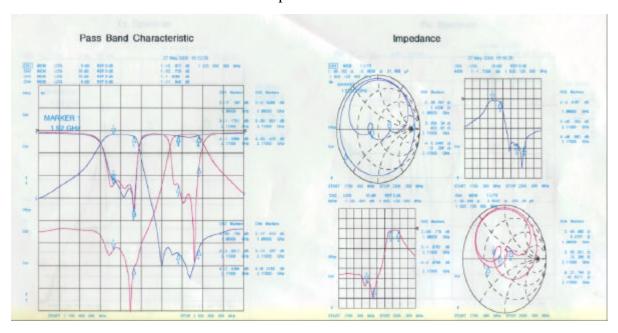
< 5-1>(a) Coplanar < 5-1>(b) RF 7

. (b)

Co-planer

 $3 \times 6 \times 0.5 \text{ cm}^3$.

IMT - 2000

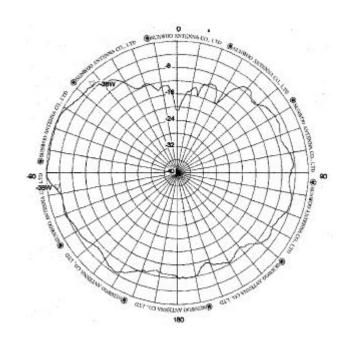

Duplex er (LG)

Duplex er

. < 5-1> < 5-2>

Parameter	Specification @ 25
Tx	
Pass Band	1920 - 1980 MHz
Pass Band Insertion Loss	2.3 dB max
Pass Band Return Loss(@ Tx)	10.0 dB min
Attenuation @ 2110 - 2170 MHz	45.0 dB min
@ 3840 - 3960 MHz	10.0 dB min
@ 5760 - 5940 MHz	5.0 dB min
Rx	
Pass Band	2110 - 2170 MHz
Pass Band Insertion Loss	2.5 dB max
Pass Band Return Loss(@ Rx)	10 dB min
Attenuation @ 1920 - 1980 MHz	50.0 dB min
@ 2490 - 2550 MHz	-
@ 2300 - 2360 MHz	-
Max. Transmit Power	3 W

< 5-1> Duplex er

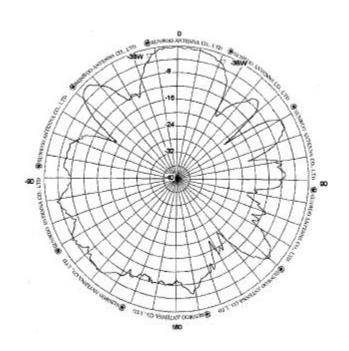


RFIC

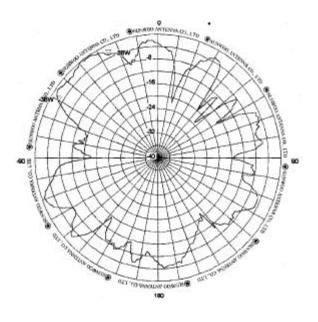
< 5-3>

Duplexer

, H-plane



< 5-3> Duplex er

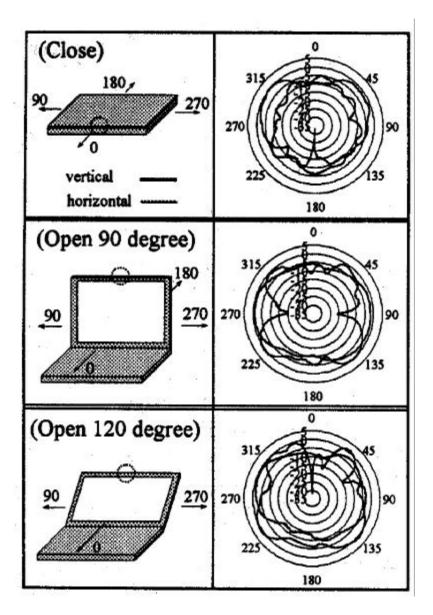

(H-plane)

< 5-4> Co-planar

, H-plane(a) E-plane(b)

(a) Co-planar H-plane

(b) Co-planar E-plane


5-4> Co-planar , H-plane(a) E-plane(b)

< 2-26,27> 5-3,4>

, < 5-5>

Murata

가

< 5-5> Murata WLAN ()

6

. Meander line Dielectric waveguide model 90 37.84 3 Q_{rad} 3 coplanar 가 , IMT - 2000 microstrip line meander line meander line , meander line 11.5 × 4 × 1 mm³ , 1.91 2.05 GHz (140 MHz : 7 %) 1.5 dBi IMT - 2000 Excellics社 PHEMT 1.92 1.98 GHz . 30 dBm 가 , PHEMT 2 25.4 dBm 2 1.92 1.98 GHz , 22 % (P_{1dB}) , 21 dB 가 6-1>

IMT - 2000

.

항 목	목 표	시뮬레이션 결 과	측정결과 (@1.92GHz)	대역특성
동작 주파수		1.92 -	1.98 GHz	
P1-dB	30 dBm	31 dBm	25.5 dBm	25.4 dBm
전력부가효율	35%	40%	23%	22%
전력이득	15 dB	34 ав	22 dB	21 ав
IP_3	40 dBm	37 dBm	36 dBm	

< 6-1>

HP社 ATF-35143 PHEMT

/ 2.11 2.17 GHz 30 dB

2 . 2 Auto CAD

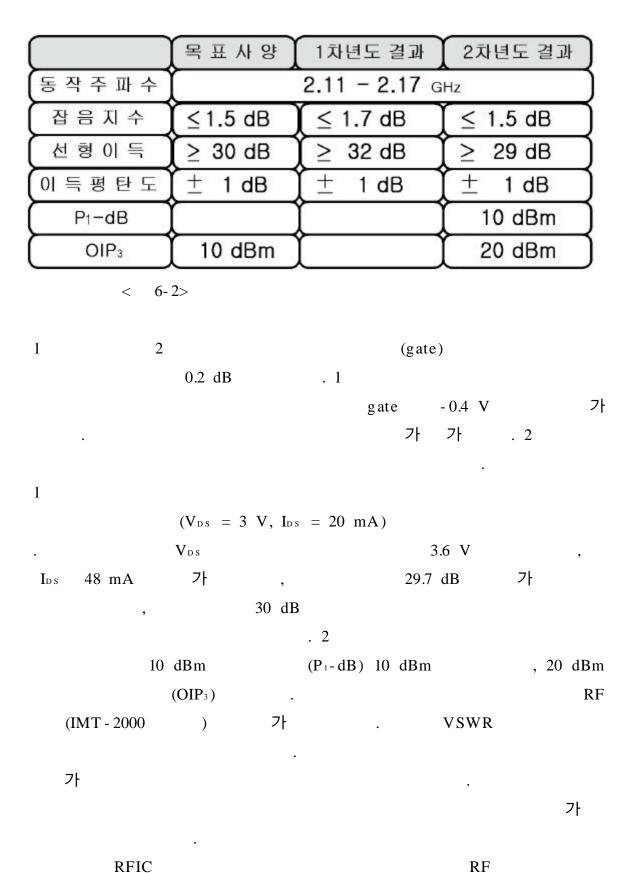
 $(18 \times 12 \text{ mm}^2)$,

mm .

가

,

2 . 2


, OPT

trade off / . 2

2.11 2.17 GHz 28.5 dB , 1.5 dB

< 6-1> 1 (1999. 3 1999. 12) 2

(2000. 3 2000. 12)

IMT - 2000

가 .

- [1] R. K. Mongia and P. Bhartia, "Dielectric resonator antennas A review and general design relations for resonant frequency and bandwidth," Int. J. Microwave Millimeter-Wave Eng., vol. 4, pp. 230-247, July 1994.
- [2] R. K. Mongia, A. Ittipiboon, and M. Cuhaci, "Measurement of radiation efficiency of dielectric resonator antennas," IEEE Microwave Guided Wave Lett., vol. 4, pp.80-82, Mar. 1994.
- [3] M. Gastine, L. Courtois, and J. J. dormann, "Electromagnetic resonance of free dielectric spheres," IEEE trans. Microwave theory Tech., vol. MTT-15, pp. 694-700, Dec. 1967
- [4] D. Kajfea and P. Guillon, Eds., Dielectric resonators. Norwood, MA: Artech, 1986.
- [5] R. K. Mongia, A. Ittipiboon, and M. Cuhaci, "Low profile dielectric resonator antennas using a very high permittivity material" Electronics Letters, 30, 17, Aug. 1994, pp.1362-1363.
- [6] J. Van Bladel, "On the resonances of a dielectric resonator of very high permittivity," IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp. 199-208, Feb. 1975.
- [7] A. K. Okaya and L. F. Barash, "The dielectric microwave resonator," Proc. IRE, vol. 50, pp.2081-2092, Oct. 1962
- [8] R. K. Mongia and A. Ittipiboon "Theoretical and Experimental Investigations on Rectangular Dielectric Resonator Antennas," IEEE Trans. on AP, vol. 45, No. 9, sep. 1997.
- [9] Akira Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice Hall, 1991.
- [10] , "
 ", 8 (Vol.11 No.5), pp. 755 762, 2000
- [11] Bomson Lee Wonkyu Choi, "Analysis of resonant frequency and impedance bandwidth for rectangular dielectric resonator antennas",

 IEEE Antennas and Propagation Society International Symposium,

- vol.4, pp.2084 2087, July.2000
- [12] N. Suzuki, K. Itoh, Y. Nagai, and O. Michigami, "Superconductive small antenna made of EuBaCuO thin films," in Proc, 5th Int. Symp. Superconductivity, Kobe, Japan, Nov. 1992, pp. 1127-1130.
- [13] Hanyang Y. Wang and Michael J. Lancaster, "Aperture-cupled thin-film superconducting meander antennas," IEEE Transactions on Antennas and Propagation, AP-47, 5, May 1999, pp 829-836.
- [14] , , "Meander line ", vol. 21. No.1 pp.145 148, 2000 7
- [15] J. M. Golio, Microwave MESFETs & HEMTs, Artech House, 1991
- [16] E. Camargo, Design of FET Frequency Multipliers and Harmonic Oscillators, Artech House, 1998
- [17] H. Statz et al., "GaAs FET Device and Circuit Simulation in SPICE," IEEE Trans. on ED, vol. 34, No. 2, pp. 160-168, Feb, 1987
- [18] A. van der Ziel.,"Gate noise in field effect transistors at moderately high frequencies," Proc. IEEE, vol. 51, pp. 461-467, 1963
- [19] T. Takada et al.,"A MESFET variable-capacitance model for GaAs integrated circuit simulation," IEEE Trans. Microwave Theory Tech., vol. MTT-30, pp. 719-724, 1982
- [20] T. H. Chen et al,"A capacitance model for GaAs MESFET's,"" IEEE Trans. ED, vol. 32, po. 883-891, 1985
- [21] H. C. Poon et al,"Modeling of emitter capacitance," Proc. IEEE, vol. 57, pp. 2181-2182, 1969
- [22] HP-EEsof, Libra Manual Circuit Network Items, HP-EEsof社
- [23] " RFIC ()"
- [24] Tri T. Ha, Solid-State Microwave Amplifier Design, John Wiley & Sons, Inc., 1981
- [25] BJORN M. ALBINSSON "A Graphic Design Method for Matched Low-Noise Amplifiers," IEEE Transaction on Microwave Theory and

Techniques, vol, 38, no. 2, February 1990

[26] , "Ku-Band ", , 14 1 , pp.3-6, 1991 [27] " RFIC ()"

- [28] R.E Lehmann and D.D Heston, "X-band Monolithic Series Feedback LNA," IEEE MTT-S International Microwave Symposium Digest, PP. 51-54, 1985
- [29] KARL B. NICLAS, "Noise in Broad-Band GaAs MESFET Amplifiers with Parallel Feedback," IEEE MTT, vol. MTT-30, no. 1, January 1982
- [30] Luciao Boglione, Roger D. Pollard, Vasil Postoyalko, "Optimum Noise Source Reflection Coefficient Design with Feedback Amplifiers," IEEE Transaction on Microwave Theory and Techniques, vol. 45, no. 3, march 1997
- [31] W. H Hayward, "Introduction to radio frequency design," Prentice-Hall, New Jersey
- [32] Guillermo Gonzalez, "Microwave Transistor Amplifier Analysis and Design," Prentice Hall International Editions, second edition, pp. 294-322, 1997
- [33] , "RF M/W " 4 , 1999. 7. 15. 7. 16